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Summary
This paper deals with the visual inspection of ceramic’s tiles surfaces for the

purpose of detecting flaws using a wavelet approach. Surface defects in the ceramic
tiles are viewed as in-homogeneities in regularity and orientation fields. To improve
the homogeneity of batches received by final users and to detect manufacturing de-
faults, most production lines for ceramic tiles must integrate a visual control stage
before the packing operation. The goal of the inspection is not to give a statistical
analysis of the production but to classify every tile into quality-constant batches.
These tasks are often referred to as visual inspection; Visual inspection procedures
have been implemented and tested on a number of tiles using synthetic and real
defects. The results suggest that the performance is adequate to provide a basis for
a viable commercial visual inspection system. Wavelet decompositions often pro-
vide very parsimonious image representations, and this feature has been exploited
to devise powerful compression, Denoising and estimation methods. In our work
we introduce a hierarchical wavelet- based framework for modeling patterns in dig-
ital images. This frame work takes advantage of the efficient image representations
afforded by wavelets, while accounting for unknown pattern transformations.

keywords: Visual inspection, Ceramic tiles, Surface defects Wavelet decom-
position.

Introduction
The ceramic tiles industrial sector is a relatively young industry which has

taken significant advantage of the strong evolution in the world of automation in
recent years. All production phases have been addressed through various technical
innovations, with the exception of the final stage of the manufacturing process.
This is concerned with visual surface inspection in order to sort tiles into distinct
categorizes or to reject those found with defects and patterns faults. The generally
accepted manual method of tile inspection is labor intensive, slow and subjective.
Automated sorting and packing lines have been in existence for a number of years,
however, the complexity of inspecting tiles for damage and selecting them against
the individually set quality criteria of a manufacturer has meant that, until recently,
automated tile inspection has not been possible.1

Tiredness and lack of concentration are common problems, leading to errors
in grading tiles. Gradual changes are difficult for human inspectors to detect and
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it is possible that slight and progressive changes will not be noticed at an early
stage. Additionally, it is particularly difficult for the human eye to accurately sort
tiles into shades, with changing light conditions in a factory. Human judgment is,
as usual, influenced by expectations and prior knowledge. However this problem
is not specific to structural defects. In many detection tasks for example, edge
detection, there is a gradual transition from presence to absence. On the other
hand, in “obvious” cases most naïve observers agree that the defect is there, even
when they cannot identify the structure.

The defect detection operation induces that the entire surface of every tile must
be imaged and analyzed. Therefore each tile needs to be imaged individually with-
out any sampling operation. The image acquisition must be achieved directly on
the line, in real time, and the image analysis algorithms must be fast enough to
follow the production rate.2 This paper is concerned with the problem of automatic
inspection of ceramic tiles using computer vision. It must be noted that detection
of defect in textured surfaces is an important area of automatic industrial inspection
that has been largely overlooked by the recent wave of research in machine vision
applications. So, this paper aims to create a system that is capable of classifying
tiles effectively, objectively and repeatedly, with sufficient rapidness and low costs
and the ability to adapt autonomously to changes in materials.

The techniques used range from Long crack, crack, blob, pin-hole and spot de-
tectors algorithms for plain, and textures tiles. This therefore reduces the number
of complaints tiles. The presented inspection procedures have been implemented
and tested on a number of tiles using synthetic and real defects. Such a monitoring
task is of course tedious, subjective and expensive but it is based on a long expe-
rience and can utilize the huge appreciation and recognition abilities of the human
brain. The test criteria can be specified by those responsible for quality from the
production and marketing divisions. The automated system accepts defect values
which are acceptable to the Quality Management. One of its advantages; the au-
tomated system is flexible in regard to production changes and testing criteria and
that is simple to operate and gives a good overview. By looking at the results we
found it highly suitable for providing a rapid feedback in the production process,
this relates especially to the sorting of dried tiles.2

Depending on the number of defects and their dimensions, the tiles are grouped
into classes; Class I, Class II, Class III, and waste tiles. We use one of the most
scientific foundations for computer vision which is Wavelet decomposition for the
visual inspection system. In our work we introduce a hierarchical wavelet-based
framework for modeling patterns in digital images. This frame work takes ad-
vantage of the efficient image representations offered by wavelets, while account-
ing for unknown pattern transformations, which we will see, its results in the next
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sections.3

Image capturing and acquisition
The main task of our work is to create new images that are more suitable for

the purposes of visual perception object detection and target recognition can be
used in the classifying or sorting process at the industry. Among the wide variety
of available products for tiling, an important part present a glossy surface induced
by polishing or glazing operations. Observing the surface under low angle lighting
allows controlling the quality of the gloss. The ceramic tiles have been captured
through the online camera held on the line production at the industry. Figure 1
shows a simplified view for the visual inspection system held on the line produc-
tion. The image captured will convert to other kinds of images (Binary, and Gray
scale) to be suitable for the various defect detection algorithms used for the differ-
ent types of defects.4

Figure 1: Simplified view of visual
inspection system held on the pro-
duction line O

O
Figure 2: General algorithm for dis-
crete wavelet transforms

Wavelet Processing
Wavelets are mathematical functions that cut up data into different frequency

components, and then study each component with a resolution matched to its scale.
They have advantages over traditional Fourier methods in analyzing physical situ-
ations where the signal contains discontinuities and sharp spikes.

The first in processing the discrete-time signals is analogous using the Fourier
series (FS) where a continuous function is transformed into a discrete sequence
of coefficients. The second is analogous to the Discrete Fourier Transform (DFT)
where a discrete function is transformed into a discrete function. Indeed, the DFT
is often used to calculate the fourier series coefficients, but care must be taken to
avoid or minimize aliasing.5

It is possible to completely remove certain components of a signal while leav-
ing others completely unchanged. The same can be done using wavelet transform
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to achieve wavelet based, wavelet domain signal processing, or filtering. Indeed, it
is sometimes possible to remove or separate parts of a signal that overlap in both
time and frequency using wavelets, sometimes impossible to do with conventional
Fourier-based techniques.

The fundamental idea behind wavelets is to analyze according to scale. Indeed,
some researchers in the wavelet field feel that, by using wavelets, one is adopting a
whole new mindset or perspective in processing data.6,7

Wavelet algorithms process data at different scales or resolutions. If we look
at a signal with a large “window,” we would notice gross features. Similarly, if
we look at a signal with a small “window,” we would notice small features. The
result in wavelet analysis is to see both the forest and the trees, so to speak. When
we analyze our signal in time for its frequency content, unlike Fourier analysis, in
which we analyze signals using sines and cosines, now we use wavelet functions.

The Continuous Wavelet Transform
The continuous wavelet transform (CWT) is defined as the sum over all time

of the signal multiplied by scaled, shifted versions of the wavelet functionψ :

C(scale, position)=
∞∫

−∞

f (t)ψ(scale, position, t)dt (1)

The results of the CWT are many wavelet coefficients C, which are a function
of scale and position. Multiplying each coefficient by the appropriately scaled and
shifted wavelet yields the constituent wavelets of the original signal. If the signal
is a function of a continuous variable and a transform that is a function of two
continuous variables is desired. The continuous wavelet transform (CWT) can be
defined by:

F(a,b) =
∫

f (t)ω
(

t −a
b

)
dt (2)

With an inverse transform of,

f (t) =
∫∫

F(a,b)ω
(

t −a
b

)
dadb (3)

Where ω(t) is the basic wavelet and a, b ∈ R are real continuous variables.

Discrete Wavelet Transform Algorithms
Calculating wavelet coefficients at every possible scale is a fair amount of work,

and it generates an awful lot of data. (What if we choose only a subset of scales and
positions at which to make our calculations). It turns out, rather remarkably, that
if we choose scales and positions based on powers of two, so called dyadic scales
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and positions, then our analysis will be much more efficient and just as accurate.
We obtain such an analysis from the discrete wavelet transform (DWT).4

Given a signal s of length N, the DWT consists of log2N stages at most. Starting
from s, the first step produces two sets of coefficients: approximation coefficients
cA1, and detail coefficients cD1. These vectors are obtained by convolving s with
the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for
detail, followed by dyadic decimation. More precisely, as shown in figure 2 the first
step is:

The length of each filter is equal to 2N. If n = length(s), the signals F and G,
are of length n + 2N - 1, and then the coefficients cA1 and cD1 are of length.

f loor

(
n−1

2

)
+N (4)

The next step splits the approximation coefficients cA1 in two parts using the
same scheme, replacing s by cA1 and producing cA2 and cD2, and so on. Therefore,
the wavelet decomposition of the signal s analyzed at level j has the following
structure: [cA j, cD j, ..., cD1]. This structure contains for J = 3, the terminal nodes
of the following tree as shown in figure 3.6,10,11

Figure 3: One-dimensional DWT
Structure

Figure 4: TEMPLAR algorithm
block diagram

Fast Wavelet Transform (FWT)
In 1988, Mallat produced a fast wavelet decomposition and reconstruction al-

gorithm. The Mallat algorithm for discrete wavelet transform is in fact a classi-
cal scheme in the signal processing community, known as a two-channel sub-band
coder using conjugate quadrature filters or quadrature mirror filters (QMF). The de-
composition algorithm starts with signal s, next calculates the coordinates of A1 and
D1, and then those of A2 and D2, and so on. The reconstruction algorithm called
the inverse discrete wavelet transform (IDWT), starts from the coordinates of AJ

and DJ , next calculates the coordinates of AJ−1, and then using the coordinates of
AJ−1 and DJ−1 calculates those of AJ−2, and so on.9
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A Wavelet-based Approach to Pattern Analysis
Despite the success of wavelet decompositions in other areas of statistical sig-

nal and image processing, current wavelet-based image models are inadequate
for modeling patterns in images, due to the presence of unknown transformations
(e.g., translation, rotation, location of lighting source) inherent in most pattern
observations.11

Wavelets are adjustable and adoptable. Because there is not just one wavelet,
they can be designed to fit individual applications. They are ideal for adaptive
systems that adjust themselves to suit the signal. The generation of wavelets and
the calculation of the discrete wavelet transform are well matched to the digital
computer.

In our work we introduce a hierarchical wavelet- based framework for mod-
eling patterns in digital images. This frame work takes advantage of the efficient
image representations afforded by wavelets, while accounting for unknown pattern
transformations. Given a trained model, we can use this framework to synthesize
pattern observations. If the model parameters are unknown, we can infer them from
labeled training data using TMPLAR (Template Learning from Atomic Represen-
tations). TEMPLAR employs Minimum Description Length (MDL) complexity
regularization to learn a template with a sparse representation in the wavelet do-
main.

Wavelet decompositions often provide very parsimonious image representa-
tions, and this feature has been exploited to devise powerful compression, denois-
ing and estimation methods. The pattern interest undergoes an unknown or random
transformation during data acquisition (e.g. variations in illumination, orientation,
translation, and perspective). Modeling the wavelet of such transformed data leads
to distorted components, or even components that model the transformations in-
stead of the structure of the underlying object or pattern. The objective is to develop
a wavelet based framework for modeling pattern observations that have undergone
random transformations in the observation process.

We introduce an algorithm that combines the edge-detection property of wavelets
with minimum description length (MDL) complexity- regularization to automati-
cally learn a low dimensional pattern template from noisy, randomly transformed
observations. The resulting template may then be applied to classification or pat-
tern analysis. We work with a fixed wavelet basis, and allow the dimension of the
template to vary.

When a pattern is observed in an image it can appear in any number of loca-
tions, orientations, scales , etc., in the image, depending on the spatial relationship
between the image forming device and the pattern, further uncertainty in pattern
observations can be caused by lighting sources, background clutter, observation
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noise, and deformations of the pattern itself (if the pattern is not rigid, like a hu-
man face).we model these uncertainties in pattern observations with a hierarchical
frame work, based on the notion of deformable templates. Figure 4 shows the gen-
eral block diagram for the TEMPLAR algorithm.

We apply TEMPLAR using Haar wavelet, Daubechies wavelet, Coiflets wavelet,
Symlets wavelet, and Biorthogonal wavelet, and using transformations that cover
translations of up to ±32 pixels horizontally or vertically. The algorithm converges
after five iterations for this particular realization of the training data. We also ob-
serve that the final template does not represent any of the clutter present in the
training images. We illustrate template learning on real data. We see twelve obser-
vations of a randomly translated, noised, variable lighting, and rotated ceramic tile
images. These 128 ×128 = 16.381 dimensional images were obtained with a digital
camera. Finally TEMPLAR is an iterative, linear time algorithm that combines the
edge detection property of wavelets with MDL complexity-regularization to learn a
low dimensional template which is automatically inferred from the data. Once the
template has been learned the resulting model can be used for pattern synthesis or
pattern classification.11,12

Experimental work
The main task of our work is to create new images that are more suitable for

the purposes of visual perception object detection and target recognition. Due to
their time–frequency localization properties, discrete wavelet transforms have been
proven appropriate starting points for the classification of the measured signals.
They allow the extraction of richer problem-specific information from sensor sig-
nals than earlier methods for many practical applications. Defects are extracted
from the background by thresholding the image and then classified according to
size and shape parameters. Existing machines commonly detect the following de-
faults:

1. Chips (edges and corners)
2. Cracks
3. Scratches
4. Glaze faults
5. Holes and pitting
6. Lumps

The sensitivity of the imaging system is linked to the local roughness contrast in-
duced by the defect; it has nothing to do with the color contrast. Because they rely
on two independent physical properties of the material, color defects and surface
defects inspection are complementary.10 The new methods as TEMPLAR enables
a large reduction of the wavelet transform data while retaining problem-specific
information, which facilities an efficient pattern recognition process.
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Due to desirable properties concerning approximation quality, redundancy, nu-
merical stability, etc. The wavelet bases constructed by Haar, Daubechies became
the foundation for the most popular techniques for signal analysis and representa-
tion in a wide range of applications. We applied five (5) kinds of wavelet decompo-
sition types (Haar, Daubechies, coiflet, Biorthogonal, and Symlet) on two groups
of tiles including different defects were studied (Crack defect, Long crack defect,
and Blob defect).

In TEMPLAR, we begin with the generation of the artificial clear and clean
template our experimental procedures concentrates on the measurements obtained
from studying two different series of tiles having different defects as we mentioned
previously. This is followed by applying our algorithm to each series of tiles. This
explained in figure 5 showing the original clear and clean tile captured image in the
factory. That is followed by; generating the artificial template from training data
which contains randomly translated, noised and rotated tile images, with variable
background and lighting conditions. Our algorithm will make use of this artificial
template shown in figure 6 to produce at the final step in TEMPLAR the variance
image including only the defect.

The same procedures were done for another series of tiles including different
types of defects illustrated in figures 7 and 8.

In the second stage in TEMPLAR, we analyze the tile images which including
the defects by the wavelet toolbox in Matlab to a maximum level for decomposition.
The defective tiles images are shown in figures 9, and 10.

We choose the maximum level to be five levels. Also using five (5) kinds of
wavelets (Haar, Daubechies, coiflet, Biorthogonal, and Symlet). The highest-level
decomposition components in the five (5) kinds of wavelets used as the input to the
next part of TEMPLAR.8,12. All of the results of this part are displayed in figures
11, and 12. The highest component images displayed is a sequence of templates
means transformed into the spatial domain in the learning algorithm. So, the images
are synthesized images not clear like the original images.

The third stage in TEMPLAR is the reconstruction operation, which carried
out using wavelet transform toolbox in Matlab that gives us the Variance result
as an image, which is a black & white or Gray scale image. It contains only the
difference between the artificial template image (which can be considered the orig-
inal template clear, and clean image tile) and the defect tile image. Crack defect
variance images using Haar and Daubechies wavelets shown in figures 13, and 14.
Long crack and Blob defect variance images using Haar and Daubechies wavelets
shown in figures 15, and 16.

We could see a difference between the resultant variance images analyzed us-
ing Haar wavelet and Daubechies wavelet. This difference is because each type of
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Figure 5: Original clear and clean tile
captured image (first series)

Figure 6: Artificial Template for tile im-
age without the defect

Figure 7: Original clear and clean tile
captured image (second series)

Figure 8: Artificial Template for tile im-
age without the defect

Figure 9: The defective tile image for
Crack defect

Figure 10: The defective tile image for
Long crack & Blob defect

wavelets Haar or Daubechies even any other type of wavelets using different de-
tails in computations. Each type of wavelets working with the image’s pixels in a
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Figure 11: Reconstructed Highest
components wavelet types decompo-
sition for Crack defect tile image

Figure 12: Reconstructed Highest
components wavelet types decompo-
sition for Long Crack defect tile im-
age

Figure 13: Variance for Haar Wavelet
for Crack defect tile image

Figure 14: Variance for Daubechies
Wavelet for Crack defect tile image

Figure 15: Variance for Haar Wavelet
for Long Crack & Blob defect tile im-
age

Figure 16: Variance for Daubechies
Wavelet for Long Crack & Blob de-
fect tile image
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different way also number of pixels has been taken in each type of wavelet.

This affect when analyze the defective tile image with different types of wavelet.
Generally, this difference is effective due to the accuracy degree needed in analysis.
When we need high degree of accuracy we could use the Daubechies wavelet and
when we need a lower degree of accuracy we could use Haar wavelet but that affect
in the processing time when we work with more details. Working with more details
takes more processing time than working with fewer details.

Conclusion
The result of the project is a prototype tone analyzer with some major simpli-

fications compared to the solutions currently available on the market The essential
advantage of an automated system compared with a manual sorting of dried tiles
consists in the compliance with the testing criteria by a fast, continuous testing of
the tile. By the use of the automated system, miss-sorting is kept at an extremely
low level.

These results in lower indirect costs and means that the system can be moved
when required. A lot of tiles were analyzed (many dozen per article for logistic rea-
sons, whereas the operating conditions (speed of the line with all its irregularities,
vibrations etc.) were similar to real conditions. Other typical conditions of ceramic
factories (dust, high temperatures, etc) were taken into account during design.

Automated sorting systems would bring numerous benefits to the entire sector
with major economic advantages. A fully automated sorting system would be able
to guarantee product quality, increase plant efficiency and reduce fixed and periodic
investments. Therefore a selection in homogeneous classes with similar character-
istics is needed. The effects of unequal lighting and of the space sensitivity of the
TV camera CCD are corrected analyzing a sample tile made of white Plexiglas
whose image has been previously divided in 8x8 sectors. This number represents a
compromise between spatial resolution distribution and computing time.
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