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Evaluation of Compliance of Arterial Vessel using Coupled
Fluid Structure Interaction Analysis

Abhijit Sinha Roy1, Lloyd H. Back2 and Rupak K. Banerjee3 ,4

Summary
The in vivo and ex vivo compliance of arteries are expected to be closely related

and estimated. Fluid-structure interaction analysis can assess the agreement be-
tween the two compliances. To evaluate this hypothesis, a pulsatile fluid-structure
interaction analysis of blood flow in femoral artery of a dog was conducted us-
ing: (1) measured in vivo mean pressure (72.5 mmHg), mean pressure drop (0.59
mmHg), mean velocity (15.1 cm/sec); and (2) ex vivo measurements of non – lin-
ear elastic properties of femoral artery. Additional analyses were conducted for
physiological pressures (104.1 and 140.7 mmHg) and blood flow using a character-
istic linear pressure – flow relationship. The computed compliance decreased from
0.198% diameter change/mmHg at 72.5 mmHg to 0.145% diameter change/mmHg
at 140.7 mmHg. The computed compliance tends to match well with in vivo com-
pliance of femoral artery at lower pressure but is overestimated at higher pressure.
This suggests an alteration in the compliance of the artery during ex vivo elasticity
measurements.

keywords: Hemodynamics, fluid-structure interaction, femoral artery, pressure-
flow relation, compliance.

Introduction
The compliance and non-linear elasticity of arterial wall have been researched

for many years. Researchers have developed experimental setups to measure the
circumferential, longitudinal moduli and the shear modulus of several arteries both
in humans and animals [1-3]. Since arterial viscoelasticity is small, present model-
ing methods treat arteries primarily as elastic in nature. Several models have been
proposed to quantify non-linear, isotropic and a few on anisotropic behavior of the
arteries. Fluid-structure interaction is a valuable tool to analyze the effect of fluid
stresses on wall mechanics in healthy and diseased arteries having plaque [4-8].

The issues of compliance mismatch and vessel injury are present in several
clinical therapies, e.g., arterio-venous fistula having different artery and vein elas-
ticity [9], balloon angioplasty causing stretching of the artery [10,11], migration
and endoleaks in endovascular grafts [12,13], stents alter the compliance of the
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vessel [14,15]. To reproduce the in vivo hemodynamics and wall mechanics, it
is essential to know whether the arterial properties measured ex vivo are indica-
tive of properties that exist in vivo. Therefore, this study aims to compare the
in vivo compliance of an artery based on elastic properties measured ex vivo. In
this study, this comparison has been performed for a range of systemic pressures
and blood flow, which is characteristic of pressure dependent alterations in blood
flow in femoral artery of dog. This study utilizes in vivo measurements of pres-
sure, pressure drop, velocity and cross-sectional area in femoral artery of dog and a
computational fluid structure-interaction model using non-linear, anisotropic wall
properties for the same vessel. The computed wall mechanics are compared with
in vivo compliance of the femoral artery of dog reported elsewhere.

Methods
In Vivo experiment

The experimental measurements are shown in Figure 1 [16]. Figure 2 shows
a schematic diagram of the femoral artery, with dimensions and locations of the
pressure taps and flow cuff [16]. The femoral artery tapers linearly along its length.
At the inlet and outlet (figure 2), there was a small branch, which was used as a
pressure tap and connected via tubing to the pressure transducer. The flow was
measured by an external Doppler flow cuff as shown in the figure. The time aver-
aged pressure drop (Δp̃) measured experimentally between the two pressure taps
(inlet and outlet) was 0.59 mmHg. The time and spatially averaged axial velocity
( ˜̄uz) measured by the cuff was 15.1 cm/sec. Mean blood pressure was 72.5 mmHg.
The heart rate was 128 beats/min (period T = 0.469 sec).

Compliant artery - blood flow model
Geometry

The mean inner wall diameter at the inlet (d̃i) and outlet (d̃o) is 3.8 and 3.6
mm, respectively. The in situ axial distance between the pressure taps is 5.2 cm,
such that the ratio of axial length to diameter is around 13.7 [16].

Blood flow model
The blood flow through the femoral artery is laminar, incompressible, viscous,

pulsatile and non-Newtonian. An axi-symmetric form of the governing equations
is solved. The following equations are used:

∇.u = 0 (continuity equation) (1)

ρ(∂u/∂ t +((u−um).∇u) = −∇p+∇.(μ∇u) (momentum equation) (2)

The Carreau model of non-Newtonian blood viscosity is used [16]:

μ = μ∞ +(μ0 −μ∞) .
(

1+(β γ̇)2
)(n−1)/2

(3)
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Figure 1: (A) Experimental pressure and axial velocity measured in the tapered
femoral artery of dog; (B) Measured in vivo pressure drop measured between the
inlet and outlet of the tapered artery section.
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where μ∞ =0.0345 Poise, μ0 =0.56 Poise, β =3.313 sec and n = 0.3568. The
density (ρ) of blood is 1.05 gm/cm3.

The boundary conditions are as follows (Figure 2):

p at the inlet = pi(t) (4)

p at the outlet = po(t) (5)

ur at the axis = 0 (6)

∂u/∂ z = 0 at the inlet and outlet (7)

(8)

where um, ur and u is the mesh velocity, radial velocity and velocity vector, respec-
tively. At lumen and arterial wall interface, no slip boundary condition is applied:

u = ḋS (9)

where ḋS is the time derivative of displacement at blood - inner wall (of the artery)
interface.

Arterial wall model
The arterial wall is assumed to be homogenous, hyperelastic and incompress-

ible. The equilibrium equations and boundary conditions for the arterial wall are as
follows:

σS
αβ ,β = 0 (10)

dS = dF at the inner wall (11)

σS
αβ .nβ = 0 at the outer wall (12)

σS
αβ .nβ = σF

αβ .nβ at the fluid-solid interface (13)

where dS, dF , σS
αβ and σF

αβ are the displacement and stress tensors for the arterial
wall and blood flow, respectively, and n is a unit vector normal to the boundary.
The radial displacement of the axis is zero. The in vivo length of the artery is
5.2 cm. The cauchy circumferential and longitudinal stress - stretch ratio data for
the dog femoral artery are used as shown in figure 3A [17]. Only the average
values of ex vivo stresses were reported by Attinger [17], measured from cylindrical
samples of dog femoral artery of 6 cm in situ length. The Mooney-Rivlin model
for incompressible solid has been used. The strain energy density function (W : eq.
13) is expressed as function of I1 and I2 (see eq. 13), where I1 and I2 are the first
and second strain invariants, respectively.

W = C1 (I1 −3)+C2 (I2 −3)+C3 (I1 −3)2 +C4 (I1 −3) (I2 −3)+C5(I2 −3)2

(14)
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Figure 2: Geometry of tapered femoral artery of dog. Dimensional values re-
ported are mean values obtained from angiographic images. Figure shows an axi-
symmetric model of the artery.
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From eq. 13, the cauchy (σ c
αα) principal stresses are given by:

σ c
αα = λα (∂W/∂λα) (15)

Here, Cj’s are the material constants obtained by curve fitting the experimental
data [17]. For an incompressible artery, λrλθ λz = 1. For curve fitting the cir-
cumferential stress – stretch ratio data, it has been assumed that λr = λθ = λ and
λz = λ−2 where λ is the corresponding circumferential stretch ratio. For curve
fitting the longitudinal stress – stretch ratio data, it has been assumed that λz = λ ′

and λr = λθ = λ ′ − (1/2) where λ ′ is the corresponding longitudinal stretch ratio.
These assumptions describe the implemented experimental protocols by Attinger
[17]. The data was obtained from the no – load configuration, i.e., when transmural
pressure is zero and corresponding stresses in the artery are zero, assuming residual
stresses are not present in the wall [17].

Thus, the error function ε has been minimized using the Nelder – Mead mini-
mization algorithm to obtain the material constants:

ε2 =
n

∑
i=1

[
(σθθ −σ∗

θθ )2
i +

(
σzz −σ∗

zz

)2
i

]
(16)

where σ and σ∗ are the curve fit and measured ex vivo values [17] of stresses, re-
spectively. The index i represents the ith of n data points. As a measure of goodness
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Figure 3: (A) Non-linear circumferential and longitudinal stress-stretch ratio data.
The Mooney-Rivlin model, regressed to this experimental data, is shown as a solid
line; (B) Plot showing convexity of Mooney-Rivlin material model using regressed
material constants for the femoral artery of dog.
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of fit, the R2 value of 0.98 has been achieved for both the circumferential and longi-
tudinal stress data (figure 3A). The curve fitting procedure provided the following
material constants: C1 = 296220 dynes/cm2, C2 = -221950 dynes/cm2, C3 = 27166
dynes/cm2, C4 = 35681 dynes/cm2, C5 = -3686 dynes/cm2. To check the stability
of this curve fit, the contours of W have been plotted as function of both stretch
ratio and Green strain (Figure 3B). As seen in figure 3B, the convexity of contour
plot of W ensures the stability of the compliant wall - blood flow computations
performed in this study [18].

Hemodynamic pressure – flow relation for the femoral artery of dog
The linear pressure – flow relationship for femoral artery of dog at resting and

vasodilated flow [19-21] is used to estimate the blood flow at different pressures
(p̃o). Ehrlich et al. [19] have measured a zero – flow pressure of 35.4 mmHg at
resting flow in femoral artery of dogs, .i.e., when pressure approaches 35.4 mmHg,
blood flow in the artery ceases. Using our in vivo data and the zero – flow pressure
of 35.4 mmHg, a linear line is regressed (figure 4A). Two different pressure profiles
are used with mean values (p̃o) of 104.1 [22] and 140.7 mmHg [23] to compute
the compliance at higher p̃o. The time period of elevated pressure waveforms is
0.469 sec [16]. At the elevated p̃o, the corresponding flow rate is obtained by
extrapolating the linear pressure – flow line (Figure 4A), and is 188.2 and 289.8
ml/min, respectively.

Computation procedure
The details of the computation procedures are as follows:

a) In vivo measurements: Baseline case

At the outlet, the time varying pressure is prescribed as normal traction. How-
ever, the experimental velocity profile, measured distal to the inlet, does not ac-
count for radial variation of the local axial velocity. However, both a temporal and
spatially varying velocity uz(r, t) profile is required as a boundary condition. To
specify the boundary conditions similar to the in vivo measurements, the following
procedure has been adopted:

(1) First in a rigid artery model with dimensions as shown in Figure 2, the pressure
drop, Δp(t), is computed by specifying temporal and spatial dependent axial
velocity profile at the inlet and our measured in vivo po(t), having mean value
of 72.5 mmHg, at the outlet. At any time t, a parabolic velocity profile for a
Newtonian liquid is used to describe the spatial variation of axial velocity.

(2) Since Δp̃ in a compliant vessel is different than Δp̃ in a rigid vessel, a constant
number is added to each instantaneous computed Δp(t) obtained from the rigid
artery model. This provides an adjusted time averaged pressure drop (Δp̃),
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Figure 4: Estimation of flow using linear pressure - flow relationship: (A) Extrap-
olated linear pressure - flow relationship for baseline and elevated pressure; (B)
Measured in vivo and computed spatially averaged axial velocity profiles at cuff
location.



1146 Copyright c© 2008 ICCES Proceedings of ICCES’08, pp.1137-1156

which is higher than that computed from the rigid artery model. The positive
number is chosen using an iterative procedure where multiple computations are
performed till ˜̄uz = 15.1 cm/sec, similar to our in vivo measurements (Figure
1), is obtained at the cuff location.

(3) Then, the computed (from the rigid artery model) and incremented (after adding
the positive number) Δp(t) is added to the in vivo pressure po(t) at the outlet
to obtain the pressure pi(t) at the inlet.

(4) The resultant pi(t) is specified as normal traction at the inlet while our mea-
sured in vivo po(t) [16] is prescribed as normal traction at the outlet for the
computation.

For the compliant model, the artery was first stretched by 48% of its initial length
[24,25] such that the final length is 5.2 cm, the in vivo length. The no - load radius
at the inlet and outlet are adjusted such that the computed d̃iand d̃o is 0.38 and 0.36
cm, respectively. Further, the wall thickness at no - load is adjusted such that the
ratio of wall thickness (t) to radius (r) is about 0.14 [3].

b) Elevated pressure and flow

For the elevated pressure profiles, the adjusted time averaged pressure drop
(Δp̃) obtained from the baseline case is multiplied by a factor (> 1) to increase
its value to Δp̃e. The value is increased till the computed mean flow rate at the
cuff location is 188.2 ml/min and 289.8 ml/min for p̃o of 104.1 and 140.7 mmHg,
respectively (Figure 4B and 5A). Thus, the procedure used for these computations
is as follows:

(1) First, the compliant artery is stretched to its in vivo length as described in base-
line case.

(2) Then, the Δpe(t) is added to the pressure po(t) (pressure profiles with mean
values of 104.1 and 140.7 mmHg) at the outlet to obtain the corresponding
pressure pi(t) at the inlet.

(3) Then, the new pi(t) is specified as normal traction at the inlet while the elevatedpo(t)
is prescribed as normal traction at the outlet.

(4) Multiple computations are performed till values of Δpe(t) and pi(t) satisfy the
estimated flow from the extrapolated linear pressure –flow relationship for cor-
responding p̃o of 104.1 and 140.7 mmHg, respectively.
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Using this procedure, the computed ūz profiles at the cuff location for the elevated
pressures are similar in shape to our in vivo measured pulse (Figure 4B). The no –
load inlet radius, outlet radius and wall thickness have been kept the same for these
computations as those for the baseline case.

Mesh and convergence
The finite element method has been used to solve the blood flow and arterial

wall equations simultaneously [26]. The mesh consists of bilinear, quadrilateral,
axi-symmetric elements. The number of nodes in the blood and arterial wall zone
are 1515 and 1000, respectively. Mesh independency has been checked till the
solutions for two different mesh sizes differed by less than 0.5%. The convergence
criteria for the fluid and solid degrees of freedom are 10−6 and 10−7, respectively.
The 2nd order trapezoidal rule is used for time integration of the blood flow and
arterial wall mechanics equations. A fixed time step size of 2.345 × 10−4 sec
is used. Each computation is run for 3 cycles. It is observed that the solution
remain unchanged after the first cycle. Thus, only results from the second cycle are
presented in this paper.

Results
Velocity profiles and pressure drop

The spatially averaged axial velocity profiles ūz(t) are plotted in figure 4B for
baseline and elevated pressure p̃o. The computed ˜̄uz are 22.5 cm/sec and 29.9
cm/sec for p̃oof 104.1 and 140.7 mmHg, respectively; a 49% and 98% increase
from a measured value of 15.1 cm/sec for the baseline case. As seen in figure 4B,
the axial velocity profiles at different t are similar, though they differ in magnitude
for baseline and elevated pressure. The close agreement between our in vivo [16]
and computed data for p̃o = 72.5 mmHg provides confidence to our estimates for
ūz at different t for the elevated pressures. The Womersley number [27] for the
baseline calculation is 3.7 which increases to 4.2 for the elevated pressure.

Figures 5A shows the baseline and elevated p̃o vs. t. These profiles have
been used for the compliant wall – blood flow computations. The corresponding
−Δp(t) (= pi(t)− po(t)) profiles for the baseline and elevated pressure at differ-
ent t are shown in figure 5B. It can be seen that all −Δp(t) are similar in shape
but differ in magnitude. A significant increase in instantaneous pressure drop is
seen with increasing p̃o, flow and the diameter of the vessel. The in vivo peak
−Δp(t) during systolic and diastolic forward flow is 4.25 and 1.5 mmHg, respec-
tively (Figure 1). Comparing the baseline case and in vivo measurement, peak Δp
during systole is 29% lower, and during diastolic forward flow is 31 % lower. If
the time averaged −Δp̃’s are compared, then computed value for the baseline case
is 0.72 mmHg as compared to 0.59 mmHg measured in vivo; a difference of 18%.
Thus, the difference in −Δp̃ is significantly lower than instantaneous −Δp(t). The
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computed −Δp̃ is 1.06 mmHg and 1.35 mmHg for p̃o=104.1 and 140.7 mmHg,
respectively.

All the computations show significant phase difference between in vivo and
computed −Δp(t). On an average, the phase difference between the in vivo and
computed−Δp(t) is 20 degrees for the baseline case. The phase difference between
computed −Δp(t) and measured ūz(t) [16] for the baseline case, which is ∼ 26.6
degree. This is consistent with Womersley theory for pulsatile blood flows [27].
The phase difference between the computed −Δp(t) and in vivo −Δp(t) [16] is due
to response limitation of diaphragm based pressure transducer, which was available
to the authors and used for the in vivo experiment. However, the −Δp̃ value is not
affected much if time averaging is done synchronized with the heart rate. Table 1
summarizes the results of the computations, with mean values of d̃i, d̃o, th̃i and th̃o.

Table 1: Summary of mean pressure drop (Δp̃), mean axial velocity ( ˜̄uz), mean
radius at inlet (d̃i) and outlet (d̃o), wall thickness at inlet (t̃i) and outlet (t̃o) for
baseline and elvated pressures.

−Δp̃ ˜̄uz d̃i d̃o th̃i th̃o

(mmHg) (cm/sec) (cm) (cm) (cm) (cm)
In vivo4 0.59 15.1 0.38 0.36 - -

p̃o = 72.5 mmHg (Numerical) 0.72 15.1 0.38 0.36 0.027 0.027
p̃o = 104.1 mmHg (Numerical) 1.06 22.5 0.41 0.39 0.026 0.026
p̃o = 140.7 mmHg (Numerical) 1.35 29.9 0.44 0.42 0.024 0.024

Compliance of the femoral artery of dog
Due to variability in artery dimensions, wall thickness and hemodynamic con-

ditions ,compliance is a useful parameter to compare experimental data using com-
putational models. Compliance (c) of a vessel is given as follows [28]:

c =
(

1
r

)(
∂ p
∂ r

)−1

(17)

Figure 6A-C show the variation of mid-wall radii at the inlet and outlet for the base-
line and elevated pressures. Many researchers have linearised eq. 16 to estimate a
simple measure of c for a given pressure and flow pulse, expressed as percent:

c =
[d (max)−d (min)]

d (min)× [p(max)− p(min)]
×100 (18)

Here d(max) and d(min) are the maximum and minimum diameter at p(max)
and p(min), respectively. The values of c at the inlet and outlet have been cal-
culated and compared with in vivo data published for femoral artery of dog [29].
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Figure 5: (A) Measured in vivo pressure profiles: baseline and elevated; (B) Mea-
sured in vivo and computed pressure drop between inlet and outlet.

Megerman et al. [29] measured in vivo the compliance, using only the outer wall
diameter, in dissected and undissected femoral artery of mongrel dog. For the
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Figure 6: Pressure vs. mid - wall radius curves at inlet and outlet: (A) p̃o = 72.5
mmHg; (B) p̃o = 104.1 mmHg; (C) p̃o = 140.7 mmHg.
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present computations, table 2 summarizes the maximum and minimum outer wall
diameters and pressures (from figure 6A-C) at the inlet and outlet. Here, dissec-
tion implies that the artery is dissected free from the surrounding tissue similar to
ex vivo conditions (figure 7). In figure 7, the computed c decreases from 0.198%
diameter change/mmHg for p̃o= 72.5 mmHg to 0.145% diameter change/mmHg
for p̃o= 140.4 mmHg. In comparison with in vivo data [29], the c tends to match
at lower pressure (∼70-110 mmHg) and is overestimated at higher pressure by our
computations (figure 7). The compliance of dissected artery is lower than undis-
sected artery [29]. This suggests an alteration in the vascular wall mechanics of
the artery from the in vivo conditions. The strong dependence of c on pressure is
evident.

Figure 7: Compliance vs. pressure evaluated at inlet and outlet. The computed data
is compared with in vivo data from reference.

Stress at the mid-wall radius
Figure 8 shows the cauchy circumferential and longitudinal stress vs. time

for baseline and elevated pressures at mid wall radius both at the inlet and outlet.
The phasic variation in circumferential stress and longitudinal stress (at the inlet) is
identical to the pressure profile. In contrast, the longitudinal stress at the oulet is in-
verted in shape for all the computations. The mean circumferential stress increases
from 42 kPa for p̃o= 72.5 mmHg to 146 kPa for p̃o= 140.7 mmHg. In contrast, the
mean values of longitudinal stresses are considerably lower, which are 28 kPa and
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Table 2: Calculated compliance of the femoral artery at different pressures along
with maximum and minimum outer wall diameter and pressure.

c (% diameter
change /mmHg)

Outer wall d(cm), pi

(mmHg) at inlet
Outer wall d(cm),
po (mmHg) at outlet

Min. Max. Min. Max.
p̃o = 72.5 ∼ 0.198 0.420, 0.456, 0.402, 0.432,
mmHg 51.3 94.5 51.3 88.7

p̃o = 104.1 ∼ 0.168 0.448, 0.502, 0.427, 0.471,
mmHg 82.3 154 82.5 144.2

p̃o = 140.7 ∼ 0.145 0.478, 0.531, 0.456, 0.498,
mmHg 121.3 196.7 121.8 184.9

31 kPa, respectively. In the physiological pressure range of 100 mmHg, the cir-
cumferential stresses should be in the range of 50-100 kPa under in situ pre-stretch
conditions [25,30]. The present calculation for p̃o = 104.1 mmHg (mean circum-
ferential stress value of 92 kPa) using our material model equation agrees well with
the past studies [25,30].

Discussion and Conclusion
In this study, the reproducibility of in vivo compliance of femoral artery of a

dog from ex vivo measured wall properties has been studied. While the computa-
tions predict radial dilations and stress distributions similar to in vivo values, the
compliance of the vessel differs from its in vivo value. The use of linear equation
(eq. 17) to calculate compliance is justified since Megerman et al. [29] have also
used the same equation. Our estimates for c and in vivo measurements for femoral
artery of dog match well in the pressure range of 70 mmHg to 110 mmHg but are
higher for pressures above 110 mmHg.

In this study, the effect of residual stresses is not considered since such in-
formation was not reported by Attinger [17]. A recent fluid-structure interaction
study on removal of tethering suggests that dissection of surrounding tissue from
the arterial wall (as in ex vivo measurements) produces native changes in the elastic
properties of the artery itself.[8]. The present analyses supports the conclusions
made by Zhang and colleagues [8] and provides direct comparison between in vivo
and ex vivo elasticity data. Cox et al. [31] have reported that the viscoelastic contri-
bution to the dynamic elastic modulus of the femoral artery of dog is less than 2%.
Thus, viscoelasticity should have negligible impact on the calculated compliance
in this study. Studies where in vivo hemodynamics, compliance and ex vivo elastic
properties have been measured are rare, if not non - existent. Further, experimen-
tal protocols tend to differ among studies [2,32]. Therefore, standardized ex vivo
experimental techniques for measurement of arterial wall properties are needed.
Presently, there are few layer specific models available that are able to account for
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Figure 8: (A) Circumferential stress vs. time for baseline and elevated pressures at
inlet and outlet; (B) Longitudinal stress vs. time for baseline and elevated pressures
at inlet and outlet. Mean stress values at the inlet are shown by horizontal lines.
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directional orientation of elastin and collagen fibres [e.g., 10]. Data pertaining to
material constants for regressed layer - specific model equations for animals are
limited. These future studies should compare both pulsatile hemodynamics and
vascular properties measured ex vivo for normal and diseased arteries to in vivo
compliance of the arteries.
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Nomenclature

p pressure in mmHg F fluid (blood flow)
d diameter in cm c Cauchy
r radius in cm l Lagrange
t time in sec . time derivative
c compliance in * experimental data

%diameter change/mmHg Subscripts
λ stretch ratio z axial
σ stress in dynes/cm2 r radial
n number of data points θ circumferential
th wall thickness α ,β co-ordinate directions
Superscripts i inlet
− spatially averaged o outlet
∼ time averaged
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