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Abstract: In physics and fluid mechanics, the boundary layer is the fluid layer in the immediate vicinity 

of a bounding surface. It is important in many aerodynamic problems. This work presents a numerical 

simulation of the two-dimensional laminar boundary-layer problem considering a steady 

incompressible flow with no-slip condition on the surface. The adaptive mesh refinement is performed 

by Autonomous Leaves Graph in the Finite Volume solution. A modified Hilbert curve algorithm is 

used to connect and provide the ordering of the graph nodes. Initially, the numerical solution for the 

flat plate problem is compared to its analytical solution, namely Blasius solution. Next, simulations of 

the flux around a NACA airfoil shape are presented. Computer experiments show that an adaptive 

mesh refinement using Autonomous Leaves Graph with the modified Hilbert curve ordering is 

appropriate for an aerodynamic problem. Finally, results illustrate that the method provides a good 

trade-off between speed and accuracy. 

 

Keywords: Finite Volume method, adaptive mesh refinement, boundary layer, NACA airfoils, space-

filling curves. 

 

1 – Introduction 

Boundary layers have been of great importance in the study of viscous fluid flow. In 1904, Ludwig 

Prandtl made the biggest breakthrough by demonstrating the existence of a thin boundary layer in fluid 

flow. Moreover, he found that there exists a thin layer near an object surface, where the viscous 

aerodynamic forces are as important as the inertial forces (Venkatachari, 2005). In other words, Prandtl 

was the first to realize that the relative magnitude of the inertial and viscous forces changed from a 

layer very near the surface to a region far from the surface. He first proposed the interactively coupled, 

namely, two layer solution, which properly models many flow problems. Furthermore, he allowed 

aerodynamicists to simplify the fluid flow equations by dividing the flow field into two areas. One 

inside the boundary layer, where viscosity is dominant and the majority of the drag experienced by a 

body immersed in a fluid is created, and one outside the boundary layer, where viscosity can be 
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neglected without significant effects on the solution. As a result, this allows a closed-form solution to 

the flow in both areas, which is a significant simplification over the solution to the full Navier-Stokes 

equations. 

By making the boundary layer approximation, the flow is divided into an inviscid portion, which is 

easily solved by a number of numerical methods. In addition to that, the boundary layer is governed by 

a specific partial differential equation (PDE). Thus, there are two regions to consider. Firstly, is must be 

taken into account the boundary layer in which the fluid viscosity, though small, exerts an influence on 

the fluid motion. Subsequently, the velocity gradient is large in this region. Secondly, in the remaining 

region no large velocity gradients occur and the fluid viscosity influence is negligible. 

Such as boundary-layer problem, many initial value and boundary problems for unsteady PDEs use 

small scale structures which develop, propagate, decline or disappear when the solution evolutes. 

Examples include boundary layers in viscous fluids and reaction zones in combustion processes. 

Consequently, the numerical solution to those problems can be very difficult due to the location, time 

and also nature of such structures are not ordinarily known in the beginning of the process. 

In relation to structures of meshes, a mesh is called structured when all internal points, volumes or 

elements have the same number of neighbors. Thus, using a structured mesh in order to cover the 

differential problem is not appropriate in the situations earlier mentioned because those meshes do not 

evaluate the differential scales of the phenomena being studied. Usually, those meshes are 

computationally expensive because they may have a large number of points to furnish an accurate 

solution. On the other hand, techniques that use an adaptive mesh refinement are less computationally 

expensive in those problems earlier mentioned. Those techniques are robust, reliable, and efficient as 

well. Furthermore, numerically solving PDEs in an efficient time requires a mesh which its points are 

more refined in regions where the solution or its derivatives quickly change during evolution of time. 

In fact, some adaptive mesh refinement strategy is required especially in unsteady problems. Following 

these aspects, the purpose of this work is to automatically build a coarse mesh where the numerical 

Proceedings of ICCES'08 1580



 

solution furnishes an appropriate approximation among piecewise control volumes. In addition, its 

purpose is also to construct a fine mesh where the numerical solution does not supply an appropriate 

approximation among piecewise control volumes, such as singularities and boundary layers, among 

others. Moreover, the developed mesh of this work has a smooth transition among neighbor piecewise 

control volumes which have different refinement levels. The reason for developing such technique is 

because an adaptive mesh refinement enormously reduces the required number of points to obtain an 

accurate numerical solution to problems that are almost smooth. And also its purpose is to reach a 

reconstruction with the desired quality in non-smooth problems. 

After this brief introduction to boundary layer and adaptive mesh refinement, section 2 presents more 

details about boundary layer. Along the same lines, section 3 deals with flat plate boundary layer. Next, 

section 4 presents the used adaptive mesh refinement scheme in detail. In the following, section 5 treats 

the numerical method for reconstruction. Afterwards, section 6 describes the Blasius solution. Section 7 

describes the Finite Volume reconstruction of the momentum equation of the boundary layer problem. 

Later, section 8 shows some experimental results. Finally, section 9 draws some conclusions. 

 

2 – Boundary Layer 

The boundary layer is a very thin layer of fluid flowing over an object surface, for instance, air over an 

airfoil. As defined, the molecules that directly touch the object surface are virtually motionless. In 

addition, each layer of molecules within the boundary layer moves faster than the layer that is closer to 

the object surface. At the top of the boundary layer, the molecules move at the same speed as the 

molecules outside the boundary layer. As established, this speed is called the free-stream velocity (u∞). 

Furthermore, the actual speed at which the molecules move depends upon the object shape, the mass of 

the fluid going by the object, and on two other important fluid properties, namely, the viscosity, or 

stickiness, of the fluid, and its compressibility, or springiness, of the fluid, i.e.,  it is how much it can be 

compacted. For this reason, the flow outside of the boundary layer reacts to the shape of the boundary 
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layer edge just as the physical object surface. Thus, the boundary layer gives to any object an effective 

shape that is usually slightly different from the physical shape. 

Aerodynamic forces depend on a complex way on the fluid viscosity. As the fluid moves past the 

object, the molecules right next to the surface stick to the surface. The molecules just above the surface 

are slowed down in their collisions with the molecules sticking to the surface. These molecules in turn 

slow down the flow just above them. The farther one moves away from the surface, the fewer the 

collisions are affected by the object surface. This creates a thin fluid layer near the surface in which the 

velocity changes from zero at the surface to the free stream value away from the surface. Therefore, 

this layer is called the boundary layer because it occurs on the fluid boundary. 

The details of the flow within the boundary layer are very important for many problems in 

aerodynamics and aeronautical engineering, including the skin friction drag on an object, the heat 

transfer that occurs in high speed flight and also wing stall. The boundary layer may also lift off or 

separate from the body, creating an effective shape much different from the physical object shape and 

causing a dramatic decrease in lift and increase in drag as well. When this happens, the airfoil stalls. 

The definition of the boundary layer thickness is to a certain extend arbitrary because transition from 

the velocity in the boundary to that outside it takes place asymptotically. This is, however, of no 

practical importance because the velocity in the boundary layer attains a value which is very close to 

the external velocity already at a small distance from the wall. Therefore, it is possible to define the 

boundary layer thickness as that distance from the wall where the velocity differs by one per cent from 

the external velocity. 

The deduction of the boundary layer equations was possibly one of the most important advances in 

aerodynamics. Using a magnitude analysis order, the well-known governing Navier-Stokes equations 

of viscous fluid flow can be greatly simplified within the boundary layer. Notably, the PDE 

characteristic becomes parabolic, rather than the elliptical form of the full Navier-Stokes equations. 
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This greatly simplifies the solution to the equations. Thus, the Navier-Stokes equations for a two-

dimensional steady incompressible flow in Cartesian coordinates are given by Eq.(1-2). 

Momentum: 
2

21

y

u

dx

dp

y

u
v

x

u
u

∂

∂
+−=

∂

∂
+

∂

∂
ν

ρ
      (1) 

Continuity: 0=
∂

∂
+

∂

∂

y

v

x

u
        (2) 

where p is pressure, u is the PDE dependent variable, ρ is the fluid density and ν is the kinematic 

viscosity. Regarding left-hand side of Eq.(2), it is the convective term. Considering first part of right-

hand side of Eq.(2), it is one example of source term. When it comes to second part of right-hand side 

of Eq.(2), it is the diffusion term. 

 

3 - Flat Plate Boundary Layer  

Consider now a thin flat plate, immersed in a uniform steady stream of viscous fluid, whose 

undisturbed velocity u∞ is perpendicular to the sharp leading edge and parallel to the plate surface. 

Above the surface, the flow velocity increases in the y direction until, for all practical purposes, it 

equals the free stream velocity. More precisely, ∆ is defined as that distance above the wall where 

ue=0.99u∞; here, u∞ is the velocity at the outer boundary layer edge. In fact, the quantity ∆ is called the 

velocity boundary-layer thickness (Anderson, 1991). Afterwards, Fig. 1 sketches the process of a flat 

plate boundary layer. We consider a two-dimensional no-slip steady flow over a flat plate at 0º angle of 

attack considering a laminar incompressible flow without heat transfer. Moreover, the energy equation 

is not needed to calculate the velocity field for an incompressible flow. Thus, the nonlinear governing 

PDEs in terms of dimensional variables are given by Eq.(1-2). 
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Figure 1: Flat plate boundary layer process - adapted from (Anderson, Tannehill and Pletcher, 1984). 

 

4 – Reconstruction by Finite Volume method with a graph-based adaptive mesh refinement 

Burgarelli, Kischinhevski and Biezuner (2006) replaced the tree-based adaptive mesh refinement 

implementation by a one-level-at-a-time approach, which yields a graph-like implementation in which 

the children nodes (leaves) become autonomous as their parent node is deleted.  Furthermore, a graph-

based implementation for dealing with adaptive mesh refinement in the numerical solution to 

evolutionary PDEs is employed. That is to say that the technique presents a plug-in feature that allows 

replacement of a group of nodes, which represent control volumes of the mesh, in any region of interest 

for another one with any refinement level. To be precise, it manages only local changes that occur in 

the data structure without needing rebuild the whole mesh. In addition, it was also especially designed 

to minimize the number of operations needed in the adaptive mesh refinement. Therefore, this scheme 

implementation allows flexibility in the adaptive mesh refinement. Besides that, storage requirements 

and computational cost compare competitively with hierarchical tree-based adaptive mesh refinement 

schemes. Moreover, low storage is achieved because only the children nodes are stored when a 

refinement takes place. Thus, a graph data structure connects nearest-neighboring children nodes 
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through direct links. Furthermore, neighboring volume nodes which were generated from different 

parent volume nodes can be directly linked whether they have the same refinement level. On the other 

hand, they are indirectly linked through a transition node in case they have different refinement levels. 

Thus, Autonomous Leaves Graph contains two linked node types: volume nodes which correspond to 

mesh control volumes, and transition nodes, which are used to connect volume nodes in different 

refinement levels. In a two-dimensional implementation, each volume node has four oriented pointers 

along corresponding directions. In fact, those pointers can point either to neighboring volume nodes or 

transition nodes.  

By now, consider the unit square as an initial mesh consisting of four control volumes inside the 

square. Afterwards, each control volume is identified by its center as shown in Fig. 2a. As nodes 

represent control volumes, each node has oriented links along the four directions. As a result, it has the 

scheme presented on Fig. 2b. Similarly, the remaining links that do not point to one of the four volume 

nodes in the square are then directed to the four transition nodes displayed in Fig. 2c as white circles. 

As shown in Fig. 2d, those non-used links of the four transition nodes are null pointers. For 

convenience, the two arrows connecting two nodes are replaced by one single line in order to simplify 

the graphical presentation as depicted in Fig. 2e. Since four lines depart and also arrive from each node, 

such graph may be used to represent the basic links for any square control volume. As an example, a 

parent volume node is represented in Fig. 2f. In a certain refinement when the parent volume node is 

deleted, each child node owns an identifier for a possible unrefinement process. The reason for such 

identifier is therefore to determine that the four volume nodes belong to the same group. In other 

words, this group, represented in Fig. 2g, is formed by the four volume nodes with the same refinement 

level, i.e., they were originated from the same parent volume node. 
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                (a)                                (b)                                     (c)                                         (d) 

 

                               (e)                                               (f)                                               (g) 

Figure 2: (a) Unit square; (b) Graph structure links; (c) Defining transition nodes; (d) Initial full 

scheme; (e) Non-directional scheme; (f) A single volume node of the graph and; (g) Elementary graph 

for refinement (Burgarelli, Kischinhevski and Biezuner, 2006). 

 

Control volumes in Fig. 3a are assigned for refinement by a certain criterion determined by problem 

in order to verify how a refinement is performed. In addition to that, a control volume configuration as 

shown in Fig. 3a is created. So, refinement is implemented through replacing the basic structure that 

represents the links of the volume node to be refined (Fig. 2f) by the bunch structure created (Fig. 2g). 

To be precise, the outward links departing from the transition nodes are connected to the volume nodes 
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at which the four links of the volume node being replaced were connected. Subsequently, the resulting 

graph for the unit square becomes that of Fig. 3b. Next, consider a second additional refinement as the 

one indicated in Fig. 3a. Likewise, application of the same principle of replacing the local basic unit by 

the basic refinement unit leads to the structure depicted in Fig. 3c. Going one refinement step further, 

the last configuration in Fig. 3a corresponds to the graph of Fig. 3d. Then, two adjacent transition 

nodes appear with the same refinement level in this case, namely 2. Afterwards, this latest graph is 

simplified by eliminating these two redundant transition nodes. Thus, it leads to the graph depicted in 

Fig. 3e. 

On the whole, the refinement sequence described above illustrates all processes during the grid 

refinement stage of the algorithm. That is to say that whenever two neighboring transition nodes at the 

same level are encountered, they are both deleted, simplifying the graph and ensuring that the search 

algorithm for neighbors of a volume node will work efficiently. Moreover, the search algorithm finds 

either the immediate neighbor or the transition nodes that connects it with neighbors having different 

refinement levels. 

In relation to memory allocation, its requirements are very low since it is needed only for children 

nodes created during refinement. Moreover, the updates that occur during refinement, including graph 

simplification, are very efficient, namely, O(1). 

There is an extra pair of pointers in each volume node in order to create a total ordering of all 

volume nodes. That is to say that starting from the first volume node, it is defined a double linked list 

connecting all volume nodes. In other words, the four volume nodes generated are properly inserted in 

the linked list at every time a refinement is made. Thus, since each modification in the list is merely 

local, an algorithm based on the Hilbert's curve construction, which Figs. 7 and 8 are examples, is used 

to implement the total ordering of the volume nodes. 
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         (a)                                          (b)                                                                    (c) 

  

                                    (d)                                                                                 (e) 

Figure 3: (a) A sequence of refinements; (b) Refining the northwest control volume; (c) one more level 

of refinement; (d) Refining the northeast control volume and; (e) Graph simplification (Burgarelli, 

Kischinhevski, Biezuner, 2006). 
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5 – Finite Volume method reconstruction of the flat plate boundary layer problem 

When it comes to the flat plate boundary layer problem, this studied problem has no pressure gradient 

flow for such a flow presented in Eq.(1-2) (Neel, 1997). Since pressure is invariant, i.e. dp/dx=0 

because the inviscid flow over a flat plate yields a constant pressure over the surface, Eq.(1) can be 

written as Eq.(3). 
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Consider a two-dimensional control volume depicted in Fig. 4. Thus, by integrating Eq.(3) in the 

control volume, it yields Eq.(4). 
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Figure 4: Two-dimensional control volume (adapted from Sperandio, Mendes and Silva, 2004). 

 

Applying the Divergence theorem, Eq.(4) yields Eq.(5). 
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Assuming that the flow in the middle of the control volume edge represents the middle of its 

variation in the edge (Sperandio, Mendes and Silva, 2004), Eq.(6) can be written as Eq.(7). 
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Interpolation functions aim to evaluate the dependent variable value in the control volume edge as 

well as its derivative. Therefore, the here used interpolation function evaluates the value of a generic 

property u in the control volume interface. Besides that, differencing schemes apply to the convective 

term linearization, i.e. the convected quantity discretization. As far as differencing schemes are 

concerned, early attempts to solve advection-diffusion problems applied the Central Differencing 

scheme (CDS); however it is predominantly diffusive. Hence, solutions exhibited non-physical 

behavior to problems with predominant advection. Since CDS simply follows the linear interpolation 

idea, it is the most straightforward discretization of the convected variable. In terms of a Taylor-series 

expansion, CDS is second-order accurate; nevertheless, it is rarely used nowadays owing to its 

conditional stability (Madsen, 1998). On the other hand, Upwind Differencing scheme (UDS) is a well-

known remedy for the difficulties encountered in CDS. It was first put forward by Courant, Isaacson 

and Rees in 1952 and subsequently reinvented by Gentry, Martin and Daly in 1966, Brakat and Clark 

in 1966, and Runchal and Wolfshtein in 1969 (Patankar, 1980). As defined, it consists of setting the 

volume-face value equal to the nearest volume-center value in the upstream direction. In fact, UDS is 

only first-order accurate but still an improvement over CDS, as it gets rid upstream propagation of 
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disturbances. Since the here flat plate problem studied flow is from west to east and from south to north 

in order to evaluate the boundary layer, an UDS is used as presented in Eq.(8). 
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where yxh ∆=∆= and sn ννν == . In the following, Eq.(8) is divided by up in order to an easier 

computational implementation. In addition to that, uw is considered in the previous iteration. Thus, 

algebraic manipulations yield Eq.(9). 
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where ν is the kinematic viscosity, h represents the vertical and horizontal edge size of a control 

volume. Including, (uW,vW), (uN,vN), and (uS,vS) are the west, north and south neighbors of a control 

volume (uP,vP), respectively. Following the same technique, Eq.(2) is discretized as shown in Eq.(10). 
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To sum up, the here proposed Finite Volume method equations are written in Eq.(9-10), which are 

semi-implicit numerical approximations of the mathematical modeling given by Eq.(3-2), respectively. 

Afterwards, Fig. 5 depicts the discretization scheme adopted, which the gray circles represent the 

control volumes of the Finite Volume mesh. 

 

Figure 5: Adopted discretization scheme: momentum and continuity discretization, respectively. 
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6 - Blasius incompressible laminar flow over a flat plate 

This flow problem brings out some fundamental aspects of viscous flow and boundary layer theory. In 

fact, no pressure gradient exists and a constant boundary layer edge velocity occurs for this flow as 

well. Moreover, it also gives rise in similar solutions. Furthermore, all the profiles along the plate can 

be represented by a single curve with the proper dimensionless. For the solution to this constant 

property, flat plate flow is known as the Blasius solution, which shows that for a flow with Reynolds 

number (Re) much larger than unity, i.e. Re >> 1, the velocity profiles have the same dimensionless 

shape in the boundary layer region. Precisely, it is defined a dimensionless similarity variable in the 

normal direction given by Eq.(11) to demonstrate this. Subsequently, the velocity parallel to the plate is 

dimensionless by the edge velocity u∞, which is also the free-stream velocity for this particular case 

(Schlichting, 1979). In brief, this work determines the boundary layer height ∆ over a flat plate by the 

analytical Eq.(12). 
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where x is the horizontal distance from the flat plate leading edge, ∞u is the air velocity in free-stream 

region, and ν is the air kinematic viscosity. 

 

7 - Finite Volume reconstruction of the momentum equation of boundary layer problem 

According to Anderson (1984), the usual boundary conditions can be applied as 

)(),(lim xuyxu e
y

=
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where the subscript e refers to conditions at the boundary layer edge. The pressure 

gradient term in Eq.(1) is to be evaluated from the given boundary information. With ue(x), specified, 

dp/dx can be evaluated from an application of the equations which govern the inviscid outer flow 
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(Euler’s equation) giving dp/dx=-ρue due/dx. Taking this into account, the here proposed Finite Volume 

method of the momentum equation is written in Eq.(13) which is a fully implicit numerical 

approximation of the mathematical modeling given by Eq.(1). 
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where ν is the kinematic viscosity, h represents the vertical and horizontal edge size of a control 

volume. Including, (uW,vW), (uN,vN), and (uS,vS) are the west, north and south neighbors of a control 

volume (uP,vP), respectively. 

 

8 - Experimental investigation 

Tests were accomplished with air kinematic viscosity ν=1.5
.
10

-5
 m

2
/s. Regarding refining decision, it is 

done in both directions, namely, horizontal and vertical directions. In other words, a volume node is 

refined whether the sum of its flux and the flux of one of its neighbors, divided by the edge length of 

the control volume, is larger than a criteria determined by the user. 

 

8.1 – Flat Plate boundary layer reconstruction 

Tests of flat plate boundary layer reconstruction were realized with u∞=200, u∞=10 and also a limit of 

eight refinement levels for each control volume. Initially, Blasius solutions are depicted in Fig. 6. That 

is to say that lines in Fig. 6 show the boundary layers for both tests. 

One example of tests performed for the here approach adaptive mesh refinement reconstruction is 

depicted in Fig. 7 comprising of x=[0;1], y=[0;0.1] and u∞=200. Moreover, black line shows the 

modified Hilbert curve for ordering mesh and red line shows the boundary layer. 

A test comparing the adaptive mesh refinement and a non-adaptive mesh refinement was accomplished 

in order to show the adaptive mesh refinement improvement. The non-adaptive mesh refinement 
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needed 340 control volumes whereas test with the adaptive mesh refinement, presented in Fig. 7, 

needed 164 control volumes, which makes up 42.2% of the non-adaptive mesh refinement scheme. 

Along the same lines, the adaptive mesh refinement scheme lasted 234 milliseconds whereas the non-

adaptive mesh refinement scheme lasted 469 milliseconds. Considering the numerical average error 

between the reconstruction and Blasius solution, it is 0.000562 in this test. 

 

Figure 6: Blasius solution to kinematic viscosity ν=1.5
.
10

-5
, u∞ = 10 m/s and u∞ = 200 m/s. 

 

Figure 7: Flat plate boundary layer problem with kinematic viscosity ν=1.5
.
10

-5
, u∞=200 and 

Autonomous Leaves Graph adaptive mesh refinement (x=[0;1], y=[0;0.1]). 
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Figure 8 depicts a test accomplished with x=[0;1], y=[0; 0.01] and u∞=10 in order to show that 

results are similar to Blasius solution. In this test, it needed 340 control volumes for the non-adaptive 

mesh refinement scheme whereas test accomplished to adaptive mesh refinement scheme needed 169 

control volumes, which is 49.7% of the total amount of the non-adaptive mesh refinement scheme. In 

addition, the adaptive mesh refinement scheme lasted 813 milliseconds whereas the non-adaptive mesh 

refinement scheme lasted 1282 milliseconds. In this test, numerical average error between 

reconstruction and Blasius solution is 0.008305. Shortly, table I summarizes those results. 

 

Figure 8: Flat plate boundary layer problem with kinematic viscosity ν=1.5
.
10

-5
, u∞=10 and 

Autonomous Leaves Graph adaptive mesh refinement (x=[0;1], y=[0;0.01]) showing horizontal 

component  of the vector field. 
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Table I: Comparison between adaptive and non-adaptive schemes. 

                  u∞=200                 u∞=10 

Tests Number of 

refinements 

Processing 

time in 

milliseconds 

Number of 

refinements 

Processing 

time in 

milliseconds 

Non-adaptive mesh 

 Refinement 
       340        469       340      1282 

Adaptive mesh 

 Refinement 
       164        234       169       813 

Numerical average error 

comparing reconstruction 

and Blasius solution 

              0.000562               0.001694 

 

8.2 – NACA0012 boundary layer reconstruction 

In the figures of this section, a NACA0012 airfoil is presented in red with 35
o
 of angle of attack. In 

relation to the modified Hilbert curve, it is represented by a yellow line. Besides that, such tests were 

accomplished with u∞=250. Thus, test of NACA0012 boundary layer numerical simulation shown in 

Fig. 9 with a limit of 6 refinement levels for every control volume around the airfoil. More precisely, 

Fig. 9 shows horizontal component of the vector field as integers. Figure 10 shows a part of Fig. 9, 

where boundary layer and turbulence can be observed. 

Another test of NACA0012 boundary layer numerical simulation is shown in Fig. 11. It presents a limit 

of 5 refinement levels for every control volume around the airfoil. To be precise, Fig. 11 shows both 

horizontal and vertical components (u,v) of the vector field as integers. Fig. 12 shows a part of Fig. 11, 

where boundary layer and turbulence can be observed. Figure 13 sketches the flux shown in Fig. 9 

representing its vector fields. Figure 14 shows details of Fig. 13 representing the turbulence inner the 

boundary layer. Figure 15 shows the horizontal component of the vector field of the numerical 

simulation. Similarly, the NACA0012 airfoil presents angle of attack of 35
o
. In addition to that, 

Autonomous Leaves Graph presents 10 refinement levels, kinematic viscosity of ν=1.5
.
10

-5
 and 

u∞=350. This test resulted in 7474 graph nodes. Likewise, Fig. 16 shows the refinement levels of the 
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numerical simulation of the NACA0012 airfoil with 35
o
 of angle of attack with Autonomous Leaves 

Graph with 10 refinement levels. 

 

Figure 9: Numerical simulation of the NACA0012 airfoil boundary layer with kinematic viscosity 

ν=1.5
.
10

-5
, u∞=250, 35

o
 of angle of attack and Autonomous Leaves Graph adaptive mesh refinement 

(x=[0;1], y=[0;1]) showing the horizontal component of the vector field. 

 

Figure 10: Details of the numerical simulation of the NACA0012 airfoil boundary layer with kinematic 

viscosity ν=1.5
.
10

-5
, u∞=250, 35

o
 of angle of attack and Autonomous Leaves Graph adaptive mesh 

refinement (x=[0;1], y=[0;1]) showing the horizontal component of the vector field. 
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Figure 11: Numerical simulation of the NACA0012 airfoil boundary layer with kinematic viscosity 

ν=1.5
.
10

-5
, u∞=250, 35

o
 of angle of attack and Autonomous Leaves Graph adaptive mesh refinement 

(x=[0;1], y=[0;1]) showing both horizontal and vertical components (u,v) of the vector field as 

integers. 

 

Figure 12: Details of the numerical simulation of the NACA0012 airfoil boundary layer with kinematic 

viscosity ν=1.5
.
10

-5
, u∞=250, 35

o
 of angle of attack and Autonomous Leaves Graph adaptive mesh 

refinement (x=[0;1], y=[0;1]) showing both horizontal and vertical components (u,v) of the vector 

field. 
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Figure 13: NACA0012 airfoil boundary layer flux representation with kinematic viscosity ν=1.5
.
10

-5
, 

u∞=250, 35
o
 of angle of attack, 7 refinement levels and Autonomous Leaves Graph adaptive mesh 

refinement (x=[0;1], y=[0;1]) showing the directions of the vector field (u,v). 

  

Figure 14: Details of NACA0012 airfoil boundary layer flux representation with kinematic viscosity 

ν=1.5
.
10

-5
, u∞=250, 35

o
 of angle of attack, 7 refinement levels and Autonomous Leaves Graph adaptive 

mesh refinement (x=[0;1], y=[0;1]) showing the directions of the vector field (u,v). 
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Figure 15: boundary layer numerical simulation of the NACA0012 airfoil with kinematic viscosity 

ν=1.5
.
10

-5
, u∞=350, 35

o
 of angle of attack and Autonomous Leaves Graph adaptive mesh refinement 

(x=[0;1], y=[0;1]) showing the horizontal component of the vector field in 10 refinement levels. 
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Figure 16: Representation of the modified Hilbert curve and adaptive refinement in the numerical 

simulation of the NACA0012 airfoil boundary layer with kinematic viscosity ν=1.5
.
10

-5
, u∞=350, 35

o
 

of angle of attack and Autonomous Leaves Graph adaptive mesh refinement (x=[0;1], y=[0;1]) in 10 

refinement levels. 

 

9 – Considerations and future work 

This work presents boundary layer problem reconstruction by Autonomous Leaves Graph using Finite 

Volume method. Flat plate boundary layer reconstruction is compared to Blasius solution and 

NACA0012 airfoil is numerically reconstructed showing that Autonomous Leaves Graph for adaptive 

mesh refinement with the modified Hilbert curve for ordering volume nodes of the graph is adequate 
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for a complex problem such as an aerodynamic problem. In the future, a FVM simplex unstructured 

mesh should be investigated. 
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