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Application of Kalman Filter and H∞ Methodologies to
Estimate Attitude of a Satellite Control System Simulator

L.C.G. DeSouza1

Summary
Satellite Attitude Control System usually does not have all the states available

for feedback; therefore, full state estimation by any sort of filtering methodology
becomes essential. A good estimation algorithm must filter out the undesirable
noise from the measurement signal. Kalman Filter (KF) technique is a traditional
procedure to estimate the states of a linear system that are not always measured
directly by the sensors, minimizing the variance of the estimated error. However,
the KF is not fully robustness proven in face of unpredictable noise sources and it
is not always able to minimize the error under severe conditions. In that case, the
H∞ filter method is an alternative when robustness is at stake. The H∞ filter is less
known and less commonly applied than the Kalman filter for state estimation, but
it presents advantages that make it more effective in some situations. This paper
presents the application and comparison between the conventional Kalman filter
and the H∞ technique for estimating attitude of a Satellite Attitude Control System
Simulator, which has a reaction wheel as actuator and a gyroscope as sensor. Both
filters performance are investigated considering noise variation due to uncertainties
in the plant and sensors.
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Introduction
Space missions involving automatic procedures for guidance and control, re-

quire from the satellite Attitude Control System (ACS) reliability and adequate
performance. Experimental validation of new equipment and/or control techniques
through prototypes is the way to increase confidence of the ACS, mainly when it
is in a noisily environment and suffer of parameters variation. In that case robust-
ness need to be experimentally validated in order to improve ACS performance.
The Space Mechanics and Control Division (DMC) of INPE is responsible for con-
structing a Simulation Laboratory to supply the conditions for implementing and
testing satellite ACS. The DMC is constructing a 1D simulator, with rotation in
the vertical axis. The simulators consist of a disk-shaped platform, supported on a
plane air bearing. The platform can accommodate various satellites components;
like sensors, actuators, computers and its respective interface and electronic. De-
pending on the complexity of the satellite mission the ACS design methods can
be based on linear or on nonlinear dynamics. Besides, the ACS never can relay
completely on the fact that all the states are available for feedback. As a result,
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state estimation by a sort of filtering methodology becomes essential. Kalman filter
methodology (Anderson and Moore, 1979) is very well known and it was developed
to solve a specific spacecraft navigation problem. Since then, it has been applied
in diverse areas. The Kalman filter (Sorenson, 1985) estimates the states of a lin-
ear system, often embedded in control systems to obtain an accurate estimation of
some states, which are not always measured directly by the sensors. However, KF
method has some limitations, when it assumes that the noise properties are known,
and minimizes the average estimation error. Actually it is difficult to implement KF
properly when one does not know anything about the system noise and when one
prefers to minimize the worst-case estimation error. These limitations gave rise to
the H∞ (infinity) filtering approach (Simon, 2006), also known as minimax filtering
which minimizes the "worst-case" estimation error. More precisely, the H∞ filter
minimizes the maximum singular value of the transfer function from the noise to
the estimation error. While the Kalman filter requires knowledge of the noise statis-
tics of the filtered process, the H∞ filter requires no such knowledge. Then, the H∞
filtering problem minimizes the effect of modeling errors on the estimation error
and can be designed to be robust to uncertainty in the system model. As one can
see both techniques have their pros and cons. Although, the H∞ filter is less known
and less commonly applied than the Kalman filter, it is expected that it have some
advantages when dealing with uncertainty.

Steyn and Hashida (1999) have implemented a Kalman filter type during the
initial tumbling phase of a satellite to determine the body angular velocity from
magnetometers measurements. Souza, Kuga, and Fenili (2004) have used the
Kalman filter to estimate elastic parameters of a rigid-flexible satellite in order to
improve the controller performance. Clements, Tavares, and Lima (2000) have de-
veloped and implemented an extended Kalman filter attitude estimator to be used
in a small satellite control system.

Simulator Dynamic Model
In order to apply the Kalman filter and the H∞ technique for estimating attitude

one has to obtain the Simulator Model (Conti and Souza, 2007), which has one
reaction wheel as actuator and one gyroscope as sensor with its respective interfaces
and one battery, see Fig. 1. Both filters performance are investigated considering
the measurements noise source due to the gyro precision, and the process noise
source due to uncertainty in the simulator inertia moment.

The simulator model can be represented by a linear system, which is described
by the state and output equations, respectively, given by

xk+1 = Axk +Buk +wk (1)

yk = Cxk + zk (2)
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Figure 1: Simulator with its equipments

where A, B, and C are matrices; k is the time index; x is the state of the system;
u is a known input to the system; y is the measured output; and w and z are the
process noise and the measurement noise, respectively. The vector x contains all
of the information about the present state of the system, but one cannot measure x
directly, instead one measures y, which is a function of x and it is corrupted by the
noise z. As a result, the filter process uses y to obtain an estimate of x.

The simulator model is obtained considering that its dynamic is based on a
double integrator given by

.

θ̈ =
N
I

(3)

where
.

θ̈ is the simulator acceleration around the vertical axis, N is the total torque
applied and I the moment of inertia around the simulator vertical axis to be con-
trolled.

In order to put Eq. (3) in states space form one integrates it twice, obtaining

θ̇k+1 = θ̇k +
N
I

t + ˙̄θk (4)

θk+1 = θk +
1
2

N
I

t2 + θ̄k (5)

where ˙̄θk and θ̄k are the velocity and the position noises.

Considering a state vector x given by

xk =
[

θk

θ̇k

]
(6)

and changing the variables in the way

x1 = θ ⇒ ẋ1 = θ̇ (7)
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x2 = θ̇ ⇒ ẋ1 = θ̈ (8)

The simulator dynamics in state space form is given by
[

ẋ1

ẋ2

]
=

[
0 1
0 0

][
x1

x2

]
+

[
0
1

]
N
I

y = [0 1]
∣∣∣∣x1

x2

∣∣∣∣ (9)

Comparing Eq. (9) with Eqs (1) and (2) it is easy to identify the matrices A, B
and C. One observes that the input N is a torque generated by a reaction wheel and
the output y is the angular velocity measured by the gyro. Therefore, the state that
is not measured and should be estimated is the simulator angular position. As a
result, both the Kalman filter and the H∞ filtering algorithms, besides estimating
the angular velocity, will estimate also the angular position, once the angular posi-
tion is fundamental for implementing control strategies based on traditional PID or
optimal LQR and LQR/LTR controllers.

In order to put the system in discrete state space form with sampling period of
Δt, one needs to find the transition matrix given by

Φ(s) = (sI−A)−1 (10)

For a state space system given by Eq. (9), one has

x(t) = Φ(t)x(0)+
∫

Φ(t−τ)Bu(τ)dτ (11)

which after some manipulation becomes

[
ẋ1

ẋ2

]
=

[
1 Δt
0 1

][
x1

x2

]
+

[ Δt2

2
Δt

]
N
I

+wk (12)

y = [0 1]
[

x1

x2

]
+ zk (13)

where zkis the measurement noise and wk is the process noise.

Kalman Filter Algorithm
The Kalman filter methodology is very well known, but the main aspects of it

are highlighted here in order to compare with the H∞ technique. In the KF method-
ology, it is assumed that, the expected value of the estimate should be equal to the
expected value of the state. The algorithm minimizes the expected value of the
square of the estimation error, which means that on average, the algorithm gives
the smallest possible estimation error. One also assumes that the average value
of the process noise w and the measurement noise z are zero and that there is no
correlation between them.
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The process noise covariance matrix Sw and the measurement noise covariance
matrix Sz are defined as

Sw = E(wkwT
k ) (14)

Sz = E(zkz
T
k ) (15)

where (.)T represent matrix transposition and E(·) the expected value.

There are many equivalent ways to express the Kalman filter algorithm equa-
tions (Simon, 2007), the formulation adopted here is given by

Kk = APkC
T (CPkC

T +Sz)−1 (16)

x̂k+1 = (Ax̂k +Buk)+Kk(yk+1−Cx̂k) (17)

Pk+1 = APkAT +Sw −APkC
T S−1

z CPkAT (18)

where (.)−1 indicates matrix inversion. The K matrix is called the Kalman gain,
and the P matrix is called the estimation error covariance.

In the state estimate Eq. (17) the first term is the state estimate at time (k + 1)
that is just A times the state estimate at time k, plusB times the known input at time
k. The second term is called the correction term and it represents the amount to
correct the propagated state estimate due to our measurement.

Inspection of the K gain equation shows that if the noise covariance matrix Sz

is large, K will be small and one will not give much credibility to the measurement
y when computing the estimation of x. On the other hand, if Sz is small, K will be
large and one will give a lot of credibility to the measurement when computing the
estimation of x.

The H∞ Algorithm
As mentioned before, the Kalman Filter theory has serious limitations when

one does not know much about the system noise or when one wishes to minimize
the worst-case estimation error rather than the variance of the estimation error. In
that case one option available is the H∞ filter, which does not make any assumptions
about the noise, and minimizes the worst-case estimation error (Simon, 2007).

The H∞ filter theory deals with a linear dynamic system as defined before and
it intends to solve the following problem

min
x̃

max
w,v

J (19)

where J is some measure of how good our estimator is. The noise terms w and v
can be seen as adversaries that try to worsen our estimate. Given the worst possible
values of w and v, it is desirable to find a state estimate that will minimize the worst
possible effect that w and vz imposes on our estimation error. This is the problem
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that the H∞ filter tries to solve. This is why the H∞ filter is sometimes called the
minimax filter; once it tries to minimize the maximum estimation error.

The function J can be defined by

J =
ave‖xk − x̂k‖Q

ave‖wk‖w +ave‖νk‖v
(20)

where the averages are taken over all time samples k. In other words, one wants to
find a state estimate that minimizes J, so that the estimation error is as minimal as
possible.

Equation (20) is the statement of the H∞ filtering problem, which has the task
of finding a state estimate that makes J small even when the noise matrices Q,W ,
and V used in the weighted norms are large. Therefore, the designer has the trade-
offs in choosing these matrices. For example, if the w noise will be smaller than
the v noise, one should make the W matrix smaller than the V matrix. Similarly, if
one is more concerned about estimation accuracy in specific elements of the state
vector x, one should define the Q matrix accordingly.

One observes that the function J is bit complicate to be represented mathemat-
ically. However, one can solve a related problem, considering that the function to
be minimized is given by

J < 1/γ (21)

where γ is some constant number chosen by the designers. So one can find a state
estimate with the maximum value of J regardless of the values of the noise terms w
and v.

The H∞ filter equations that minimize Eq. (21) are given by

LLLk =
(
III −QQQPPPk +CCCTVVV 1CCCPPPk

)−1
(22)

KKKk = AAAPPPkLLLkCCC
TVVV−1 (23)

x̂xxk+1 = AAAx̂xxk +BBBuuuk +KKKk(yyyk −CCCx̂xxk) (24)

PPPk+1 = AAAPPPkLLLkAAAT +WWW (25)

They have the same form as the Kalman filter equations, but the details are
different, where Kk is the H∞ gain matrix and I is the identity matrix. The initial
state estimate x0 and the initial value P0 should be initialized aiming at acceptable
filter performance. This means that no matter the noise terms w and v, the ratio of
the estimation error to the noise will always be less than 1/γ .

The mathematical derivation of the H∞ equations is valid only if γ is chosen
such that all of the eigenvalues of the P matrix have magnitudes less than one. If
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γ is too large, a solution to the H∞ filtering problem does not exist. That is, one
cannot find an estimator that will make the estimation error arbitrarily small. More
details of the H∞ filter theory can be found in Simon (2006).

Simulation Results
One assumes that the angular velocity is measured with nominal noise of 0.05rad/s

(one standard deviation). The commanded torque is a constant of 1Nm and the pro-
cess nominal noise of 0.01Nm (one standard deviation). The angular position is
measured 10 times per second (sample time ΔT = 0.1s). In the simulation one
will evaluate the Kalman filter performance keeping the process noise constant and
varying the measured noise and vice-versa. As for the and H∞ filtering performance
one uses in Eq.(20) the same measurement and process noise as before and the state
error equal to 0.0001. In the control law design is important to vary the measured
noise to represent gyro errors and process noise to represents the uncertainty in the
simulator inertia moments so that one obtains a robust control law.

Figure 2 shows Kalman filter (red) and H∞ filter (blue) performance for a mea-
sured noise of 0.05rad/s and the process noise of 0.01Nm. In the first graph one
observes that the noisy looking curves of the angular position error for the Kalman
filter is bigger than H∞ filter. In the second graft one observes that the angular
velocity error for the Kalman filter is also bigger than the H∞ filter. Although, for
both filters the error is still inside 0.15 rad/s (3 sigma), for the Kalman filter the
angular position is a little worse than the H∞ filter.

Figure 2: Kalman and H∞ filters errors for Nominal noise

Figure 3 shows the Kalman filter and H∞ filter performance for a measurement
noise of 0.5rad/s and the process noise of 0.01Nm. In the first graph one observes
that in the first 200 seconds the angular position error for the Kalman filter is much
more degraded than H∞ filter. In the second graft one observes that the angular
velocity error for the Kalman filter is also degraded as for the H∞ filter. Now, both
filter error still inside 1.5 rad/s (3 sigma).
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Figure 3: Kalman and H∞ filters errors for variation in the measurement noise

Figure 4 shows the Kalman filter and H∞ filter performance for a measurement
noise of 0.05rad/s and the process noise of 0.1Nm. In the first graph one observes
that in the first 50 seconds the angular position error for the Kalman filter is sim-
ilar to the H∞ filter. However, after that, the Kalman filter angular position error
increases. In the second graft one observes that the angular velocity error for the
Kalman filter is similar to the H∞ filter. For both filters the errors is still inside 0.15
rad/s (3 sigma).

Figure 4: Kalman and H∞ filters errors for variation in the process noise

Conclusions
This paper presents the application of the Kalman filter and the H∞ filter tech-

niques for estimating attitude of a Satellite Attitude Control System Simulator,
which has a reaction wheel as actuator and a gyro as sensor. Both filters per-
formance are investigated considering measurement and process noise variation,
which represents uncertainties in sensor and in the plant. The simulator equations
of motions were obtained for a platform with rotation around the vertical axis. Once
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the simulator has only angular velocity sensor and it is planed to implement PD,
PID, LQR and LQG control law type, both filters algorithm can be used to estimate
also the angular position. From simulations one observes that the Kalman filter
performance is worse than the H∞ filter when the measurements noise and process
noise increased separately. This means that the Kalman filter may not comply with
the attitude control specification when there is great uncertainty in the sensor and
plant. As a result, the H∞ filter algorithm is a good candidate to be implanted in
the simulator control system.
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