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Effects of Different Weight Functions on Convergent
Property of SFDI

Q.W. Ma1

Summary
In the MLPG_R (Meshless Local Petrove-Galerkin based on Rankine source

solution) method, one needs a meshless interpolation scheme for an unknown func-
tion to discretise the governing equation. A new scheme, called simplified finite
difference interpolation (SFDI) has been recently devised by the author, which is
more efficient and has better convergent property than others. This paper will dis-
cuss about how the convergent property is affected by different weight functions.

Introduction
In [1], the MLPG (Meshless Local Petrove-Galerkin) method (see, e.g., [2][3][4])

was developed into a new form called the MLPG_R method, suitable for modelling
nonlinear water waves. In the MLPG_R method, the water wave problems are
solved using a time-step marching procedure, in which the velocities of particles at
each time step are updated by numerical integration and the pressure is found by
solving a boundary value problem. To do so, one needs a meshless interpolation
scheme. Computational costs spent on them are considerable. Reducing these costs
can make the method more efficient. The MLS (moving least squqre) method was
utilised by the author in [1]. However, the MLS method has some drawbacks. Ma
[5] recently devised another new scheme called SFDI - Simplified Finite Differ-
ence Interpolation. Based on numerical tests, it was shown that this scheme had the
following advantages. (1) It is as accurate as the MLS method generally but more
accurate than the later when the number of neighbour nodes was small. (2) It needs
considerably less CPU time than the MLS method. (3) The scheme is not sensitive
to scale factors. The numerical tests in [5] are based only on the spline weight func-
tion. One may ask if the above statements hold when using other weight functions
possessing different properties. This paper is to investigate the effects of different
weight functions on the property of the SFDI to answer the question.

Brief of Simplified Finite Difference Interpolation (SFDI) Scheme
The SFDI scheme includes the expressions for the meshless interpolation of an

function and its gradient. The detail derivations have been described in [5]. Only
the main expressions are summarised here.

Function interpolation
A general function f (�r) at a point�r0 is expressed, in terms of its nodal values
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at a set of nodes, by:

f (�r0) =
N

∑
J=1

ΦJ (�r0;�rI) f (�rJ) , (1a)

where N is the number of nodes affecting the point, �rJ is the position vector of
Node J and ΦJ (�r0;�rI) is the shape function in the SFDI interpolation and is defined
by

ΦJ (�r0;�rI) =
w(|�rJ −�r0|)

N
∑
J

w(|�rJ −�r0|)
− (1−δIJ)B0,J (�rI)+δIJ

N

∑
J �=I

B0,J (�rI), (1b)

where

δIJ =

{
1 I = J

0 I �= J
, B0,J (�rI) =

w(|�rJ −�rI |)
|�rJ −�rI |2

d

∑
k=1

�R0,xk

nI,xk

(�rJ,xk −�rI,xk)

and

�R0,xk =
N

∑
J

(�rJ,xk −�r0,xk)w(|�rJ −�r0|)
/ N

∑
J

w(|�rJ −�r0|).

In the above equations, w(|�rJ −�r0|) is a weight function which will be given below
and d is the number of spatial dimensions (d=2 for 2D cases and d=3 for 3D cases)
and xk for k=1,2 and 3 is x, y andz, respectively. It can be seen that Eq. (1) does not
need to solve any algebraic equation or to calculate the inverse of a matrix. That is
why it is more efficient than the MLS method.

Gradient interpolation
The expression for the gradient is given by

( f,xm)�r0
=

N

∑
J=1

Γ̃mJ (�r0) [ f (�rJ)− f (�r0)] (2a)

with

Γ̃mJ (�r0) =
d

∑
k=1

ÃmkCkJ, J = 1,2,3 · · · . (2b)

where

CmJ =
1

n0,xm

(�rJ,xm −�r0,xm)
|�rJ −�r0|2

w(|�rJ −�r0|)

and Ãmk is an element in the matrix
[
Ã
]
, the inverse matrix of [A], i.e.

[
Ã
]
= [A]−1,

with the later defined by

Amk = a0,mk (m �= k) and Amm = 1.
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where

a0,mk =
1

n0,xm

N

∑
J

(�rJ,xm −�r0,xm) (�rJ,xk −�r0,xk)

|�rJ −�r0|2
w(|�rJ −�r0|)

.

Although Eq. (2) needs to evaluate inverse of the matrix[A], the size of this
matrix is smaller than that of its counterpart in the MLS method. The size in this
method is 2×2 for 2D cases or 3×3 for 3D cases while it is 3×3 for 2D cases or 4×4
for 3D cases in the later. In addition, the number of matrixes in the multiplication
is also smaller. Consequently, Eq. (2) require less CPU time than the MLS method.

Weight Functions
Three different weigh functions will be considered in this paper. They are

defined as follows. In the definitions, |Δ�r| is the distance of two points and hI is the
size of the support domain of the weight function which is given by hI = κh4I with
h4I being the distance between Node I and the fourth nearest neighbour node and
with κ being a scale factor.

(1) Gaussian weight function (WF1)

w(|Δ�r|) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
−

(
|Δ�r|

/
cI

)2
]
−exp

[
−

(
hI

/
cI

)2
]

1−exp

[
−

(
hI

/
cI

)2
] 0 ≤ |Δ�r|

hI
≤ 1

0 |Δ�r|
hI

> 1

where cI is a node-dependent constant controlling the shape of the weight func-
tion and is taken as the distance between Node I and the fifth nearest neighbour
in this paper. It is well known that this function is C0-continuous.

(2) Spline weight function (WF2)

w(|Δ�r|) =

⎧⎨
⎩1−6

( |Δ�r|
hI

)2
+8

( |Δ�r|
hI

)3 −3
( |Δ�r|

hI

)4
0 ≤ |Δ�r|

hI
≤ 1

0 |Δ�r|
hI

> 1

This function is C1-continuous.

(3) Simple weight function (WF3)

w(|Δ�r|) =

{
hI
|Δ�r| −1 0 ≤ |Δ�r|

hI
≤ 1

0 |Δ�r|
hI

> 1

This one has a singular point (|Δ�r| = 0). When using it, the singular point
should be excluded.
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As indicated above, the three functions have very different properties from each
other and may be considered as good representatives of various weight functions
often used in the community who employs meshless methods.

Numerical Results
In this section, investigations will be made into the effects of three weight func-

tions on the convergent rate of the new shape functions in Eqs. (1) and (2). The
computational domain for the tests is chosen as a square with the length of sides
being 1. The nodes, at which the nodal values f (�rJ) are defined, are irregularly
distributed by using quasi-random number; see, for example, [6]. A typical node
distribution is illustrated in Fig 1.

Generally, Eq. (1) is used in the
MLPG_R method to discretise the govern-
ing equation for pressure, giving the rela-
tionship between pressure at any point and
its nodal values. On the other hand, Eq.
(2) is employed to estimate the pressure
gradient at nodes in terms of its nodal val-
ues for evolving the velocity. Therefore,
different approaches should be adopted
when investigating the convergent rate of
Eq. (1) and Eq. (2). To investigate the
convergent rate of Eq. (1), the assumed
functions are interpolated by the equation
at a set of points. These interpolation
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Figure 1: Nodes and interpolation points (›:
interpolation points;“: nodes)

points are not necessarily coincided with any node and the number of the points
is not necessary the same as the number of nodes. In fact, the number of points
in the following tests is fixed as 64. For clarity, these points are denoted by �r0k

while nodes are still denoted by�rJ as above. The distribution of the points is also
illustrated in Fig. 1 together with nodes. The error of the results of interpolation is
defined as

Emean =
1
K

K

∑
k

∣∣ f (�r0k)− f̄ (�r0k)
∣∣ (3)

where Emean is the mean error, f (�r0k) is the interpolated value at the interpolation
points and f̄ (�r0k) is the values computed by the formula defining a function at the
same point; K is the number of interpolation points. For investigating the conver-
gent rate of Eq. (2), the gradient of the function is estimated at the nodes by the
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equation and the error is found by the following expression

Egmean,y =
1
M

M

∑
J

∣∣ f,y (�rJ)− f̄,y (�rJ)
∣∣ (4)

where Egmean,y represents the mean error of the y-component of the gradient, f,y (�rJ)
is the approximate value of the y-component of the gradient obtained by interpola-
tion, f̄,y (�rJ) is its counterpart computed by the formula defining the function and
M is the total number of nodes. The mean error of the x-component of the gradient
can be estimated in the same way by replacing y with x.

Fig. 2b (χ=1.8) Fig. 2c (χ=2.5)
Figure 2: Convergent rates for interpolating the polynomial function by using three
weight functions.

For numerical tests, a polynomial func-
tion of second order expressed by f =
1 + 2x2 + 3y2 is considered. Its gradient
components are easy to find and is not
written out here. The total number (M)
of nodes in the square domain described
above is selected as 25, 100, 400, 900 or
1600, respectively, in different runs. The
convergent rates for interpolation of the
function at 64 points by using three differ-
ent weight functions are shown in Fig. 2,
where the scale factors are 1.8 and 2.5, re-

Figure 3: The convergent rate for estimating
the gradients of the polynomial function using
three weight functions (χ=2.5)

spectively. The convergent rates are denoted by the decrease of mean errors defined
in Eq. (3) with the increase in the total number of nodes. The figure demonstrates
that the Gaussian (WF1) and the Spline (WF2) weight functions lead to almost the
same results and are better than those given by using the simple weight function
(WF3).
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Fig. 3 shows the convenient rates for estimating the gradient components or
partial derivative of the polynomial function. The value of f,y is obtained by using
three weight functions for the scale factor κ =2.5. It can be seen that the different
weight functions give almost the same convergent rate. The similar cases are inves-
tigated for other scale factors and also for a cosine function but not shown here to
save the space. The property of the convergence is very similar to what we see in
Figs. 2 and 3.

Conclusion
In this paper, the effects of three different weight functions on the convergent

property of a new meshless interpolation scheme (named as the SFDI) are inves-
tigated. These weight functions have quite different continuous behaviours. The
numerical results show that the convergent property of the SFDI is not significantly
different for the different weight functions. This may be considered as another good
property as one may not know which weight function is the best unless carrying out
extensive numerical tests.
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