
Seventh International Conference on CFD in the Minerals and Process Industries 
CSIRO, Melbourne, Australia 
9-11 December 2009 

Copyright © 2009 CSIRO Australia 1 

 
 

COMPUTER-AIDED ANALYSIS OF FLOW IN A ROTATING SINGLE DISK  
 
 

Mohammad SHANBGHAZANI1*, Vahid HEIDARPOUr2 , Iraj MIRZAEE2  and  S. TALEBIPOUR3 

 
1 Islamic Azad University, Ilkhchi Branch, Ilkhchi, Iran 

2 Department of Mechanical Engineering, Urmia University, Urmia, Iran  
2 Department of Mining Engineering, Urmia University, Urmia, Iran  
*Corresponding author, E-mail address: Shanbghazani@iauil.ac.ir 

 
 

ABSTRACT 
In this study a two dimensional axisymmetric, steady state 
and incompressible laminar flow in a rotating single disk 
is numerically investigated.  The finite volume method is 
used for solving the momentum equations. The numerical 
model and results are validated by comparing it to 
previously reported experimental data for velocities, 
angles and moment coefficients.  

It is demonstrated that increasing the axial distance 
increases the value of axial velocity and vice versa for 
tangential and total velocities. However, the maximum 
value of nondimensional radial velocity occurs near the 
disk wall. It is also found that with increase rotational 
Reynolds number, moment coefficient decreases. 

NOMENCLATURE 
a   Disk radius (m) 
p  Pressure (N m-2) 
r  Radial distance (m) 
ReΦ  Rotational Reynolds number ( μρ /2aΩ ) 

rv   Radial velocity component (m s-1) 
zv   Axial velocity component (m s-1) 
φv

  Tangential velocity component (m s-1) 
Tv   Total velocity (m s-1) 

z   Axial distance (m) 
ζ   Nondimensional axial distance 
μ   Dynamic viscosity (N s m-2) 
ν  Kinematic viscosity (m2 s-1) 
ρ   Density (kg m-3) 

φ   Tangential direction 
Ω   Angular velocity (rad s-1) 

INTRODUCTION 
Many technologies utilize rotating-disk systems. Such 
systems can be used to model the flow that occurs in the 
internal cooling air-systems of gas turbines or other 
rotating bodies, centrifugal pumps, viscometers and other 
devices (Owen and Rogers, 1989). Much work has been 
done to investigate fluid flow and heat transfer on a plate 
disk rotating with constant angular velocity. For such 
rotary systems thermal efficiencies may not be functions 
of only temperature. The reason for this phenomenon is 
the complexity of the flow and thermal fields and the lack 
of implicit analytical expressions for each field. It is 
important to know how the flow behaves at every stage to 

permit safe and effective operation of rotary-type 
machines. Since the governing equations, namely the 
momentum equations, are highly nonlinear and coupled, it 
is difficult to obtain an exact analytical solution (Arikoglu 
et al., 2008b). 

A schematic diagram of the flow for a free rotating 
disk is shown in Figure 1. A free disk is defined as a plane 
disk rotating with constant angular velocity Ω  about its 
polar axis in a quiescent environment. A boundary layer is 
formed on the surface of the disk in which fluid is 
entrained axially and pumped radially outward under the 
action of the centrifugal force. The flow in the boundary 
layer may be laminar or turbulent, the transition occurring 
when the local Reynolds number, φRe  exceeds a critical 

value. Here, νϕ /rRe 2Ω= , where r denotes the radius 

and ν the kinematic viscosity of the fluid. This type of 
flow was first investigated theoretically with an 
approximate method by von Karman (1921). Experimental 
work of Theodorsen and Regier (1944) and the later work 
of Gregory et al. (1955) measured velocity profiles in the 
boundary layer. Cobb and Saunders (1956) conducted 
experiments for a disk with uniform temperature, while 
McComas and Hartnett (1970) measured the heat transfer 
on a free disk. The effect of slip on entropy generation 
was investigated for flow over a rotating free disk by 
Arikoglu et al. (2008b). The steady laminar 
magnetohydrodynamics (MHD) flow of a viscous 
Newtonian and electrically conducting fluid over a 
rotating disk with slip boundary condition was studied by 
Frusteri and Osalusi (2007).  Also heat transfer from a 
rotating disk in a parallel air crossflow was investigated 
by Wiesche (2007). The steady laminar flow of an 
elastico-viscous fluid near a rotating disk is considered by 
Ariel (2003). Convection to rotating disks with rough 
surfaces in the presence of an axial flow was studied by 
Axcell and Thianpong (2001).  

In this paper, consequently, the flow structure for 
rotating single-disk systems is modeled and numerically 
assessed. The main objective is to understand the flow 
behavior in a rotating disk system e. g. velocity and 
streamline.  A secondary objective of this work is to re-
examine a numerical method which validated by 
comparing it to previously available data for momentum 
so as to provide information that can help analysts and 
designers in the proper evaluation of efficiencies and in 
the geometrical optimization of such rotating systems or 
systems having rotating parts. 
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Figure 1: Schematic diagram of the flow for a rotating 
disk 

MODEL DESCRIPTION 
For the computational aspect of this research, a rotating 
single disk is modeled (see Fig. 2). The disk is taken to 
have a radius a , to be in the plane 0=z  and to be 
rotating with an angular velocity Ω  about the z-axis. The 
integration domain is truncated at a distance s in the axial 
direction, with the axial distance s  taken as 2/1)/(20 Ων , 
where ν is the kinematic viscosity of the working fluid 
(Owen and Rogers, 1989). The rotating disk system is 
assumed to operate at steady state, be axisymmetric and 
involve incompressible flow.  
 

 
Figure 2: Physical model of a single disk 
 
The relevant governing equations for continuity and 
momentum, assuming constant thermophysical properties, 
are as follows: 
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The boundary conditions for the problem are defined as 
follows: 
 

• At the disk wall, i.e., z = 0, ar ≤≤0 : 0=rv , 

rv Ω=φ , 0=zv   

• At the end of integration domain, i.e., z = s, 
ar ≤≤0 : 0=rv , 0=φv , 0/ =∂∂ zvz   

• At the center of the disk, i.e., r = 0, sz ≤≤0 : 
0=rv , 0=φv , 0/ =∂∂ rvz   

• At the circumference of the disk, i.e., r = a, 
sz ≤≤0 : 

0/,0)/(/,0)/(/ =∂∂=∂∂=∂∂ rvrvrrvr zr φ  
 
Also, the moment coefficient is defined by:  

525.0 a

M
Cm

Ω
=

ρ
                                                    (5) 

 Here, M denotes the frictional moment and can be 
expressed as  

 drrM
b

a
o∫−= ,

22 φτπ                   (6) 

Where   o,φτ is shear stress and can be calculated as : 
0, )/( =∂∂= zo zvφφ μτ              (7) 

NUMERICAL ANALYSIS  
A computational fluid dynamics (CFD) code developed by 
the authors is used for solving the relevant mathematical 
expressions for the rotating disk system. This computer 
code is a finite-volume, steady, axisymmetric, elliptic and 
multigrid solver. The system of governing equations (1–4) 
is solved using a control-volume approach. The control-
volume technique converts the governing equations to a 
set of algebraic equations that can be solved numerically. 
The control volume approach employs the conservation 
principles and physical relations represented by the 
overall governing equations on each finite control volume. 
A first-order upwind scheme is employed to discretize the 
convection terms, diffusion terms and other quantities in 
the governing equations. The grid schemes used are 
staggered, and velocity components are evaluated at the 
center of the control volume interfaces, while all scalar 
quantities are evaluated at the center of the control 
volume. Pressure and velocity are coupled using the Semi 
Implicit Method for Pressure Linked Equations (SIMPLE) 
of Patankar (1980).  

The CFD code solves the linear systems resulting 
from the discretization schemes using a point implicit 
(Gauss–Seidel) linear equation solver in conjunction with 
an algebraic multigrid method. During the iterative 
process, the residuals are carefully monitored. For all 
simulations performed in the present study, convergence is 
deemed to be achieved when the residuals resulting from 
iterative process for all governing equations (i.e., 
equations (1–4) are smaller than 10−6. 
The grid used in the present analysis is 40 × 20, with 40 
volumes in the r-direction and 20 in the x-direction. Grids 
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having 60 × 40 and 80 × 60 configurations are also tested. 
As all grid configurations yield similar values of velocity, 
the 40 × 20 grid is accepted as sufficiently fine. This grid 
size is also validated using experimental data in the next 
section. 

RESULTS 
Figures 3 and 4 show the axial variation with 

nondimensional axial distanceζ , where ζ  = ν/Ωz , 

of velocity components ( rv Ω/φ , rvr Ω/ , 2/1)/( νΩzv ) 
and  the magnitude of the nondimensional total velocity 

( rvT Ω/  where 2/122 )( φvvv rT += ) at =φRe  4 × 104.  
In  Fig. 3, the numerical results for the velocity 

components are shown. Increasing the nondimentional 
axial distance is seen in this figure to increase the value of  
nondimensional axial velocity and vice versa for 
nondimensional tangential velocity. However, the 
maximum value of nondimensional radial velocity occurs 
near the disk wall. The computational results for the total 
velocity  is  compared with the  experimental results of 
Gregory et al. (1955) and Cham and Head (1969) in Fig. 4 
. The comparison shows the agreement between the results 
obtained with CFD and those obtained via experimental 
methods. 

 
Figure 3: Axial variation of velocity components 
near a disk for  ReΦ= 4 × 104 
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 Figure 4: Axial variation of nondimensional total 
velocity for ReΦ= 4 × 104 
 

Figure 5 shows the predictions of streamline patterns for 
the rotating disk. As illustrated in this figure, the 
centrifugal forces created by the rotating disk cause a 
radial outflow of fluid within the boundary layer. Since 
the radial component of velocity is zero both on the disk 
and in the free stream, external fluid is entrained axially 
into the boundary layer. The radial outflow is often 
referred to as the free disk pumping effect. 

A boundary layer on each side of the disk develops, 
through which the tangential component of velocity, φv  is 

sheared from the value rΩ  at the surface to the value 
zero in the “free stream” outside the boundary. The 
boundary-layer thickness over the disk is defined to be 
that height where the azimuthal flow velocity φv  has the 

value rv Ω= 01.0φ . 

 
(a)           (b)      (c) 

Figure 5: Predictions of streamline pattern for   
(a) ReΦ = 1 × 104, (b) ReΦ = 4 × 104 and  ReΦ = 2 × 105 
 

The axial variation of angle between the direction of 
flow and the radius vector )(tan 1

φψ vvr
−=o is shown 

in Fig. 6. It is observed in this figure that the maximum 
value of ψ  occurs at the maximum value of ζ . Also, the 
agreement is less satisfactory for the experimental and 
numerical results. This was probably due to the 
experimental errors arising from the inaccuracy of the 
yawmeter. 
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Figure 6: Axial variation of angle between the direction 
of flow and the radius vector 
 

The variation of moment coefficient with rotational 
Reynolds number given by numerical solution is 
compared in Fig. 7 with the experimental results of 
Theodorsen and Regier (1944). It can be seen that the 
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agreement between the experimental and numerical results 
is satisfactory. 
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Figure 7: variation of  moment coefficient  with  
rotational Reynolds number 

CONCLUSION 
A rotating single disk with constant angular velocity Ω  
about its polar axis in a quiescent environment which 
causes a boundary layer is investigated using computer 
aided analysis. The common feature observed is that there 
is a good agreement between the results obtained with 
CFD and those obtained via experimental methods.  The 
flow fields are computed numerically using the finite 
volume method. Axial, tangential, radial and total 
velocities are computed and their behaviors discussed. The 
results demonstrated that increasing the axial distance 
increases the value of axial velocity and vice versa for 
tangential and total velocities. However, the maximum 
value of nondimensional radial velocity occurs near the 
disk wall. It is also found that with increase rotational 
Reynolds number, moment coefficient decreases. The 
results are expected to be useful to those involved in the 
design of engineering systems incorporating rotating 
disks. 
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