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ABSTRACT 
Computational Fluid Dynamic (CFD) modelling of gas-
solid fluidized beds has been an active area of research for 
several decades. Although CFD models have been able to 
provide acceptable predictions of the behaviour of 
fluidized beds containing Geldart B particles, models for 
Geldart A particles have been less successful. This 
difficulty arises due to the relative importance of 
interparticle cohesive forces when fluidizing Geldart A 
particles.  
In the present work, the capability of the multiphase 
Particle in Cell (PIC) approach for modeling a bubbling 
fluidized bed of Geldart A particles has been investigated. 
Four different simulation cases, which include three 
different mesh sizes and two drag models with a realistic 
particle size distribution, have been designed and tested. 
Bubble properties have been extracted from the model 
predictions and compared with the predictions of 
empirical correlations as well as experimental data. The 
results show a promising predictive capability of the 
multiphase PIC approach without the need to modify the 
drag force or other constitutive relationships in the model. 

NOMENCLATURE 
A particle acceleration (m/s2) 
C particle velocity fluctuations averaged over the 
velocity space (m/s) 
CD drag coefficient 
dp particle diameter (m) 
D drag function (kg/m3s) 
D1 drag function in drag model 2 (kg/m3s) 
D2 drag function in drag model 2 (kg/m3s) 
F rate of momentum exchange per unit volume from the 
gas to the particle phase (N/m3s) 
g gravitational acceleration (m/s2) 
g0 solid radial distribution function 
np number of particles in a parcel  
Np number of parcels or clouds 
p gas pressure (kPa) 
Re Reynolds number 
ug gas velocity (m/s) 
up particle velocity (m/s) 

pu  mean particle velocity (m/s) 

Vp particle volume (m3) 
x particle position (m) 
 
Greek Letters 
ε gas volume fraction  
γ restitution coefficient 
μg gas viscosity (kg/m s) 
ρg gas density (kg/m3) 

pρ  average particle density (kg/m3) 

ρp particle density (kg/m3) 
τ continuum particle normal stress (N/m2) 
∇ up Divergence operator with respect to velocity 
θ particle volume fraction 
θcp particle-phase volume fraction at close packing 
Θ granular temperature (m2/s2) 

INTRODUCTION 
Although CFD modeling of single phase systems is now a 
common task, using CFD tools for modeling multiphase 
systems is still far from perfected. This is due in part to 
the difficulties encountered in describing the interactions 
between different phases. Systems containing one or more 
particulate phases are usually the most complex and 
challenging ones in the field of multiphase flows. The 
interaction between the particles themselves and the 
particles and gas are essential in particulate systems and 
should be thoroughly understood to be able to provide a 
comprehensive model of the process. 

CFD two-fluid models, or TFM, in which the gas and 
solid phases are treated as two separate but fully 
interpenetrating continua, have been able to provide 
acceptable results for the simulation of coarser particles 
(Goldschmidt et al., 2001; Taghipour et al., 2005; Boemer 
et al., 1997), belonging to the Geldart B classification of 
powders (Geldart, 1973). However attempts at the 
simulation of the finer Geldart A class of powders have 
encountered some significant challenges (McKeen and 
Pugsley, 2003; Makkawi et al., 2006). This difficulty 
arises due to the relative importance of interparticle 
cohesive forces compared with gravitational forces when 
dealing with Geldart A powders (Massimilla and Donsi, 
1976). According to Molerus (1982), the cohesion forces 
can be neglected for larger particles such as group B and 
D particles. Neglecting the cohesion forces in CFD 
models of dense fluidized beds of Geldart A particles 
leads to as much as 100% over-prediction of the bed 
expansion (McKeen and Pugsley, 2003; Makkawi et al., 
2006). In fact, by neglecting these forces the underlying 
assumption is that mainly the collisional effects control 
individual particle-particle contacts, thus a large part of 
the remaining dynamic energy of the particles is 
consumed for propelling the particles towards the top of 
the bed. 

McKeen and Pugsley (2003) were among the early 
researchers who reported this over-prediction of bed 
expansion. They argued that interparticle forces lead to 
the formation of small clusters with a corresponding 
reduction in gas-solid drag. They found that by scaling the 
drag model of Gibilaro et al. (1985) with a fractional 
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constant equal to 0.25, realistic bed expansion and bubble 
properties were predicted. Kim and Arastoopour (2002) 
tried to extend the kinetic theory to cohesive particles by 
modifying the solid distribution equation. However, the 
final expression for the particulate stress was complex and 
difficult to incorporate into the current continuous models 
(Kim and Arastoopour, 2002). Both their model and the 
model of McKeen and Pugsley (2003) did not consider the 
coexistence of particles with different sizes in the 
fluidized bed. 
 As indicated by Grace and Sun (1991), particle size 
distribution has a significant influence on the bed 
expansion. Therefore, it seems possible that consideration 
of the size distribution in the CFD models might eliminate 
the problem of over-prediction of the bed expansion. 
However, the presence of different types and sizes of 
particles complicates the modeling effort because separate 
continuity and momentum equations must be solved for 
each size and type (Gidaspow, 1994; Risk, 1993). As a 
result models have been only used for up to three solid 
‘phases’ (ie three particle sizes) in the literature, due to the 
computational limitations. The multiphase Particle in Cell 
(PIC) approach (Snider, 2001; Snider et al., 1998; 
Andrews and O'Rourke, 1996) provides a numerical 
scheme in which particles are grouped into computational 
parcels each containing a number of particles with 
identical density, volume and velocity, located at a 
specific position. The evolution of the particle phase is 
governed by solving a Liouville equation for the particle 
distribution. The result of this procedure is a 
computational technique for multiphase flow that can 
handle a distribution of particle types and sizes. Detail of 
the model is provided in the next sections.  
In the present work, the capability of the multiphase 
Particle in Cell (PIC) approach for simulating the bubbling 
fluidized bed of Geldart A particles is investigated. The 
simulation results for different parameters will be 
compared with published correlations for these parameters 
and experimental data. 

MODEL DESCRIPTION 

Governing Equations 
In the PIC approach, the mass and momentum equations 
are solved for the continuous phase (fluid) and a Liouville 
equation is solved for the particle phase to find the 
distribution of particle positions with different velocities 
and sizes. An isotropic solids stress that depends on the 
particle volume fraction is then used to model the average 
collisional force (Gidaspow, 1986; Harris and Crighton, 
1994). The mass and momentum equations for the gas 
phase are as follows, respectively (Gidaspow, 1994; 
Batchelor, 1988; Williams, 1985): 
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ερ
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where F is the rate of momentum exchange per unit 
volume between the fluid and particle phase. The detailed 
expression for F will be given later. 

The Liouville equation is used to find the particle 
distribution function f(x, up, ρp, Vp, t) at each time 
(Williams, 1985): 

( ) ( ) 0
f

f fAx p pt

∂
+ ∇ + ∇ =

∂
u u     (3) 

The Liouville equation is a differential equation 
which gives the future coordinates of the particles based 
on the current coordinates and properties of the particles 
in the phase space. It is assumed that the mass of each 
particle is constant in time (no mass transfer between 
particles or to the fluid), but particles can have a 
distribution of sizes and densities. Particles are grouped 
into computational parcels each containing Np particles 
with identical density, volume, and velocity, located at 
position, xp. The Liouville equation, Eq. (3), conserves the 
particle numbers in parcel volumes, Vp, moving along 
dynamic trajectories in particle phase space.  

In Eq. (3), A is the particle acceleration, dup/dt, and 
can be calculated from the following equation:  

1 1 1
( )A D u u p gg p x x

p p p
τ

ρ ρ θρ
= − − ∇ + − ∇  (4) 

Drag Models  
The two drag models used in this work are provided in 
Table 1. In Fig. 1, these two drag models are compared 
with other well-known drag models from the open 
literature that have been used by CFD modelers. The drag 
model number 1 used here, is the model proposed by Wen 
and Yu (1966) where the equation of Schiller and 
Naumann (1935) is used for calculating the drag 
coefficient of a single particle. The number 2 drag model 
is a modified version of Gidaspow’s drag model 
(Gidaspow, 1994). In this model, the Ergun equation 
(Ergun, 1952) is used for voidages less than 0.8 and the 
Wen and Yu drag model (Wen and Yu, 1966) for voidages 
greater than 0.8. Another drag model graphed in Fig. 1 is 
the drag model of Syamlal and O’ Brien (1989), in which 
the coefficients of the model are modified based on the 
minimum fluidization velocity using the method proposed 
by the authors. The drag models proposed by Gibilaro et 
al. (1985) and its scaled version used by McKeen and 
Pugsley (2003) are the other drag models compared in Fig 
1. As the figure shows, to be able to predict a realistic bed 
expansion, McKeen and Pugsley (2003) had to scale down 
the Gibilaro drag model by 75%. However, both drag 
models used in this study are in the range of the other drag 
models and as will be shown later, there was no need for 
scaling.  

Solid Stress Models  
The particle normal stress model used in this study is the 
Lun et al. (1987) model which is developed based on the 
dense phase kinetic theory of gases: 

2 (1 ) 0gp pτ θρ θ ρ γ= + + Θ⎡ ⎤⎣ ⎦     (5) 

It is assumed in Eq. (5) that the acceleration of an 
individual particle due to the solids stress is independent 
of size and velocity of the particle. 

The solids stress equation is comprised of two parts. 
The first part represents the kinetic contribution and the 
second part represents the collisional contribution. In a 
physical view, the kinetic part accounts for the momentum 
transferred by particles moving across imaginary shear 
layers in the system. The collisional part refers to the 
momentum transferred by direct particulate collisions. 

The granular temperature, Θ, is given by 
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1 2
3

CΘ =          (6) 

The radial distribution function can be defined as follows 
(Gidaspow, 1994): 
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Table 1: Equations of drag models. 
 
In concept, the radial distribution function provides a 
correction to the probability of a collision due to the 
presence of other particles. In the case of slightly inelastic 
collisions, where the collisional anisotropy plays a 
negligible role, the radial distribution function depends 
only on the local particle volume fraction (Ye et al., 
2005). 
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Figure 1: Comparison between different drag models used 
for CFD simulations in the literature. 
 

Particle Phase  
By using the Liouville equation for calculating the particle 
probability distribution function, Eq. (3), integrated over 
velocity, density and volume of all particles, the probable 
number of particles per unit volume at x and t that have 
the velocity, density and volume in the interval of (up, 
up+dup), (ρp, ρp+dρp) and (Vp, Vp+dVp) can be obtained. In 
this way, the size distribution of the particles is applied in 
calculating the interphase momentum transfer. 
The particle volume fraction, θ, is defined from the 
particle distribution function, f, as 

fV dV d dp p p pθ ρ= ∫∫∫ u       (8) 

Then ε and θ are related by 

1ε θ+ =          (9) 
An expression for the interphase momentum transfer per 
unit volume between the fluid and particle phases is 
needed to complete the equations: 

1
( )fV D p dV d dp p g p p p

p
ρ ρ

ρ
= − − ∇∫∫∫

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

F u u u  (10) 

The particle phase is implicitly coupled to the fluid phase 
through the interphase drag force. 

Solution Procedure  
Each computational parcel contains np real particles with 
identical density, ρp, velocity, up, volume, Vp, and 
position, xp. The Liouville equation, Eq. (3), is the 
mathematical expression of conservation of particle 
numbers in these parcel volumes moving along dynamic 
trajectories in the particle phase. The number of particles 
np associated with a parcel is constant in time. The particle 
positions are updated using the following implicit 
approximations: 

1 1n n n tp p p
+ += + Δx x u        (11) 

The particle velocity is updated by integration of Eq. (4). 
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where 1n
p
+

u is the interpolated implicit particle velocity at 

the particle location, 1n
p p

+ is the interpolated implicit 
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pressure gradient at the particle location, 1n
pτ
+ is the 

interpolated solids stress gradient at the particle location. 
The particle velocity given by Eq. (12) can be solved 
directly at each time step using fluid properties updated 
from the current time step and old-time properties for the 
solids stress. Following the particle velocity calculation, 
the particle positions are updated. The final grid volume 
fraction is calculated by mapping the particle volumes to 
the grid. This volume fraction will be used for the solution 
of gas continuity and momentum equations in the next 
time step. The new-time fluid volume fraction is 
calculated using the conservation of volume equation, Eq. 
(9). 

MODEL SET UP AND PARAMETERS 

Fluidized Bed and Flow Conditions 
A fluidized bed with 50 cm static bed depth containing 
FCC (Geldart A) particles with aSauter mean diameter of 
79 μm and the particle size distribution given in Fig. 2, 
was defined for all simulation cases. Three dimensional 
uniform meshes with mesh sizes of 0.5, 1, and 2 cm have 
been used to examine mesh dependency. The superficial 
gas velocity was 0.1 m/s, which is the same as that used 
by McKeen and Pugsley (2003) in a fluidized bed test rig 
of the same diameter and static bed depth and with FCC 
particles of the same mean diameter. The values for 
different parameters used in the model are provided in 
Table 2. The simulations in this work were carried out 
with the commercial CFD code BARRACUDA® from 
CPFD-Software Technology, Albuquerque, NM, USA. 
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Figure 2: Cumulative particle size distribution of the FCC 
powders used in the experiments. 
 

Boundary and Initial Conditions  
A Dirichlet boundary condition was defined for the gas 
phase entering at the bottom of the fluidized bed in which 
the superficial gas velocity is specified. A constant 
pressure (atmospheric pressure) upper boundary condition 
was employed at the bed exit. A uniform pressure equal to 
the atmospheric pressure and uniform gas velocity equal 
to the superficial gas velocity at minimum fluidization 
was defined throughout the column as the initial 
conditions. The initial solid fraction of the bed was 
considered to be equal to the solid fraction at the 
minimum fluidization condition.  

ANALYSIS AND RESULTS  
The model predictions have been compared with 
correlations for bubble properties as well as the 
experimental data of McKeen and Pugsley (2003). Fig. 3 
provides the cross-sectionally averaged axial profile of the 
solid fraction inside the fluidized bed. With the exception 
of the case corresponding to the 2 cm uniform mesh, both 
drag models predict an almost uniform axial solid fraction 
profile with a sudden decrease in the solid fraction. This 
sharp decrease corresponds to the interface of the upper 
surface of the dense bed and the dilute freeboard region 
above. 

The percentage of expansion from the static bed 
height for all simulation cases are also given in Fig. 3. The 
values of bed expansion show that both drag model and 
mesh size are important in prediction of bed expansion 
and their effect are comparable. It is also observable that 
the capability of the model for predicting a correct bed 
expansion highly deteriorates with increasing the mesh 
size. 
 
Geometry Three-dimensional, Cartesian  

Vessel dimension 0.14 m diameter and 1 m height 

Grid 0.5*0.5*0.5, 1*1*1, 2*2*2 cm 

Total number of particles 1.31472e+10 

Total number of clouds 3.8944e+6 

Granular viscosity model Lun et al. (1984) 

Drag model No. 1 and No. 2 in Table 1 

Flow type 
Compressible with no gas-

phase turbulence 

Simulation time 25 seconds 

Time step 0.0001 s 

Pressure-Velocity coupling SIMPLE 

Maximum solid packing 

volume fraction 
0.55 

Initial condition Bed at minimum fluidization 

Minimum fluidization velocity 0.004 m/s 

Minimum fluidization voidage 0.45 

Boundary conditions 
Uniform flow from bottom 

Atmospheric pressure at the top 

Gas superficial velocity 0.1 m/s 

Static bed depth 0.5 m 

Restitution coefficient 0.4 

Table 2: Input parameters used in the simulation. 
 

The dependency of the bed expansion on the mesh size 
was also reported recently by Wang et al. (2009). They 
found that a very small time step and a highly refined 
mesh (of the order of three particle diameters for the case 
they studied) is required for correct prediction of the bed 
expansion using the TFM approach. Employing such 
small mesh sizes makes solution of the model exceedingly 
computer intensive and time consuming, thus decreases 
the model’s functionality for larger scale applications. As 
Fig. 3 illustrates, the PIC approach is able to predict the 
correct value of the bed expansion without resorting to 
such a highly refined mesh. 
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Figure 3: Cross sectional average axial profile of the solid 
fraction inside the fluidized bed, U0=0.1 m/s, averaged 
over the period 10-25 s. 
 

Fig. 4 provides a comparison of the average equivalent 
bubble diameter as a function of height above the 
distributor predicted by our model, with values of the 
bubble diameter predicted by selected empirical 
correlations from the literature. The simple correlation of 
Hilligardt and Werther (1986) and the more elaborate 
correlations of Horio and Nonako (1987) and Choi et al. 
(1998) that account for bubble coalescence and splitting 
have been used here.  
Consistent with the copious amount of experimental 
evidence on the topic, the model predicts that bubble size 
increases with increasing height above the distributor 
inlet. The profile calculated for 0.5 cm mesh and different 
drag models produce similar predictions, which indicate 
negligible effect of the drag function. It is also interesting 
to note that the trends of the model predictions suggest a 
levelling-off of bubble growth as the upper surface of the 
bed is reached. This notion of a maximum bubble size for 
Geldart A powders is consistent with the trends of the 
correlations and also experimental evidence in the 
fluidization literature. As can be seen from the figure, the 
correlation results are generally higher than the simulation 
results. The difference between the results of various 
correlations is also noticeable. In order to make these 
correlations usable over a wider range of particle size, the 
available experimental data and correlations for different 
particle sizes have been employed in developing these 
correlations. However, most of the available data are 
based on Geldart B and larger particles. Therefore, since 
bubbles are larger for larger particles, these correlations 
might not be completely appropriate for predicting smaller 
bubbles that appear in the fluidization of Geldart A 
particles. This fact needs to be further investigated using 
the experimental data of Geldart A particles only. 
Small bubbles form at the distributor and start moving 
upward right after formation. The size of the bubbles 
increases as the upper bed surface is approached. During 
this upward travel, the bubble velocity also increases due 
to increasing bubble size (Boemer et al., 1998). Fig. 5 
compares the model and correlation predictions of bubble 
velocity with selected experimental data available in the 
literature for Geldart A particles. For calculating the 
bubble velocity, the rise velocity of a single bubble is 
needed. The correlation proposed by Wallis (1969) that 
accounts for the effect of the system geometry on the 
bubble rise velocity has been used for this purpose. As can 
be seen in the figure, the bubble velocities output by our 

PIC model fall within the range of the predictions of 
literature correlations and experimental data.  

DISCUSSION 
The predictions of our PIC model presented in the 
previous section, illustrate that, compared to the effect of 
the mesh size, the choice of drag model has a minor effect 
on the model results. As mentioned before, a key 
advantage of the PIC method is the consideration of the 
size distribution of particles in the formulation. This 
distribution influences the calculation of the momentum 
exchange term between the particulate and fluid phases. 
Although the drag force in both PIC and TFM models is 
multiplied by relative velocity between gas and solids, the 
distribution of particle sizes and their proper relative 
velocity is not considered in TFM models. 
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Figure 4: Comparison of the bubble average equivalent 
diameter as a function of height above the distributor with 
the available correlations.  
 

While increasing the resolution of the numerical grid 
enhances the predictions of the model, computation time 
also dramatically increases. For instance, the time for 
modelling 25 s of real time using a 0.5 cm mesh is 40 days 
compared to 13 days for 1 cm mesh. Since the simulation 
case with 1 cm mesh showed the ability to provide good 
results in many aspects, using this coarser mesh may be a 
reasonable choice, especially for large simulation cases. 
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Figure 5: Comparison of the variation of the bubble 
velocity with bubble diameter with the available 
correlations and experimental data. 
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CONCLUSION 
In the present work, the capability of the multiphase 
Particle in Cell (PIC) approach with a realistic particle 
size distribution for modeling the bubbling behaviour bed 
of a fluidized bed of Geldart A particles was investigated. 
Four cases with three different mesh sizes and two drag 
models were modeled. Model predictions of bubble size 
and bubble rise velocity as well as bed expansion were 
compared with commonly accepted correlations as well as 
experimental data from the literature. The results show a 
very promising prediction capability of the multiphase 
PIC approach without resorting to modification in the drag 
model. The results also indicate that although both mesh 
size and choice of drag model affect the predictions, the 
influence of the drag model is negligible compared to the 
effect of the mesh size. 
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