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ABSTRACT 

The creation of vortex pairs occurs in a range of 

industries, including mixing, transport, and plastic 

moulding. In particular, vortex pairs are observed in the 

wake of aircraft, and are the cause of a significant hazard 

in the aviation industry. Instabilities, which grow on 

vortex pairs, have been shown to lead to rapid diffusion, 

thus limiting this safety concern. To date research has only 

considered instabilities growing on a vortex pair where 

each vortex has the same magnitude of circulation. 

However in practice it is unusual to have an equal strength 

vortex pair. 

This investigation is the first to consider the instability 

modes that may develop on a Lamb-Oseen vortex pair of 

arbitrary circulation ratio. We find a significant change in 

the growth rates of all instability modes reported 

previously for an equal strength vortex pair. All 

simulations employ an accurate spectral-element method 

to discretise the domain coupled with a three-step time 

splitting scheme. A wide range of instability wavelengths 

is considered to ensure that all instability modes are 

captured. By identifying and enhancing the leading 

instability modes, we are able to enhance the dissipation of 

the vortex pair. 

NOMENCLATURE 

a characteristic vortex radius 

b vortex separation distance 

axial axial vorticity 

1 circulation of weak vortex 

2 circulation of strong vortex 

r radial dimension 

 kinematic viscosity 

 instability mode growth rate 

*=tc normalized instability mode growth rate 

k instability mode wave number 

u,v,w velocity components 

p pressure 

tc time normalization parameter 

INTRODUCTION 

The stability of vortex pairs to linear perturbations have 

been the subject of intense study for several decades, due 

largely to the application of these findings in the enhanced 

dissipation of aircraft wakes, and an improvement in our 

understanding of turbulent vortex interactions (Jacquin et 

al. (2003)). 

Much of this work has concentrated on perturbations 

growing on vortex pairs of equal magnitude circulation 

strength. Leweke and Williamson (1998) experimentally 

considered an equal strength magnitude, counter-rotating 

vortex pair, finding two modes of instability, a large 

wavelength Crow (Crow (1970)) mode, and a small 

wavelength Kelvin (Kerswell (2002)) mode,  growing on 

the vortex pair.  They found that the interaction of the two 

instability modes substantially decreased the time for the 

vortex pair to dissipate. 

By comparison with equal strength vortex pairs, relatively 

little work has considered vortex pairs of unequal 

circulation strength. Ortega et al. (2003) experimentally 

considered unequal-strength counter-rotating vortex pairs 

formed in the wake of a specific wing planform. The use 

of their specific wing planform restricted the range of 

circulation strength ratios they could consider. They 

observed several three-dimensional instability modes 

growing on the vortex cores, however little description of 

the modes was provided. Bristol et al. (2004), following 

the work of Crow (1970) and Crouch (1997),developed an 

analytical model to consider instabilities which may grow 

on a vortex pair of unequal strength circulation. However, 

the model was restricted to consider only large wavelength 

instabilities, and did not consider the effect that the vortex 

profile will have on the instability mode that could form. 

Comparing their results with Ortega et al. (2003), several 

discrepancies were noted, especially where instability 

modes had a short wavelength. 

Many investigations (for example Le Dizes and Laporte 

(2002), Lacaze et al. (2007), or Kerswell (2002)) have 

considered the instabilities that may grow on a vortex pair 

by considering an isolated vortex immersed within a linear 

strain field, the strain field being carefully chosen such 

that it is equivalent to the presence of a nearby vortex. 

These investigations have identified a range of Kelvin 

modes that can promote enhanced dissipation. However, 

findings using this technique are limited, as the technique 

assumes that the strain field is vanishingly small. By 

contrast, So et al. (2009) has shown that unequal strength 

vortex pairs typically lead to high strain rates measured at 

the core of the weaker vortex. Coincidentally, it is the 

weaker vortex that we anticipate instabilities to grow 

preferentially. 

In this study, we will consider several vortex pairs of 

unequal-strength counter-rotating vortices. Key to our 

investigation is to identify if the Kelvin modes identified 

in prior studies grow in our highly deformed vortex cores, 

or if new instability modes dominate the flow. These 

results will have direct application to the aviation field as 

unequal strength vortex clusters feature prominently in the 

wake of an aircraft. 
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FLOW FIELD DESCRIPTION 

In this study two counter-rotating Lamb-Oseen vortices, 

each of characteristic radius a, are placed a distance b 

apart as shown in figure 1. Initially, each vortex is defined 

in isolation with a Lamb-Oseen profile, defined as 
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where  is the circulation of the vortex, a0 is the initial 

vortex radius, and r is the radial dimension. For all 

simulations discussed here the length-scale ratio is initially 

set to a0/b = 0.25. The circulation strength ratio may be 

defined as 
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where 1 is the circulation of the weaker vortex and 2 is 

the circulation of the stronger vortex. In this study we 

have restricted our attention to -0.1    -1.  

The effect of viscosity may be quantified through the 

Reynolds number, based on the circulation of the strongest 

vortex (Re = 2/). Viscous effects act to increase the 

radius of each vortex core (see Le Dizes and Verga (2002) 

for details); this effect may be approximated to first order 

through the equation 
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For all simulations, the Reynolds number was set to 

20000, to agree with the previous studies of Le Dizes and 

Laporte (2002), and to minimize the impact of viscous 

vortex radial growth. In addition, the initial core radii are 

equal for both vortices at the commencement of all 

simulations considered in this study. It should be noted 

that viscous forces will be more dominant in the vicinity 

of the weaker vortex, leading the core radius of the weak 

vortex to grow substantially more than the radius of the 

strong vortex at low ||. The discrepancy in core radii is 

important as work by Le Dizes and Laporte (2002) and 

Lacaze et al. (2007), considering a single vortex immersed 

in a strain field, have shown that the instability wave-

number, k, should be normalized by core radius. However, 

under the assumption that instabilities will grow 

preferentially in the weak vortex, it is this core radius that 

is most important. In this investigation we normalize k 

with the initial vortex core size a0. 

 

Figure 1: Schematic diagram of geometry. 

 

NUMERICAL TECHNIQUE 

Two techniques are used to consider the problem. The first 

technique solves the two-dimensional incompressible 

Navier Stokes equations to evolve the base flow field such 

that the vortex pair adapt to a solution of Euler’s 

equations. This relaxation process has been described in 

detail for equal strength vortex pairs by Le Dizes and 

Verga (2002) for co-rotating vortices, and Sipp et al. 

(2000) for counter-rotating vortices. More recently, 

So et al. (2009) has considered the case of || 1. The 

base field is frozen at the conclusion of the relaxation 

process, to remove complexities introduced through 

viscous effects.  

The growth-rate and mode-shape of linear perturbations 

acting on the relaxed vortex pair are then calculated 

through the solution of the linearized Navier-Stokes 

equations. This process assumes the perturbation velocity 

and pressure terms may be written in the general form 

 

  tiikzeyxPP  ,ˆ'  ,  (4) 

 

where P’ represents any of the perturbation components 

(u’,v’,w’ or p’); is the mode shape, k is the wave-number 

of the instability along the axis of the unperturbed vortex 

pair, and  is the perturbation growth rate. In practice, a 

normalized growth rate, *=tc, is considered where 
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is the time taken for the strong vortex to travel a distance b 

along its path. 

The general perturbation form of equation 4 is substituted 

into the linearized Navier-Stokes equations, leading to a 

sparse-matrix eigenvalue problem. The leading instability 

mode (defined as the mode with the largest growth rate) is 

calculated using an Arnoldi method as described by 

Sorensen (1995). Perturbation simulations are conducted 

in a rotating reference frame to match the rotation of the 

base field, where in general, the self-induced rotation rate 

of a vortex pair may be approximated as 
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Algorithm Employed 

Spatial discretisation of the domain was achieved using a 

spectral-element technique, which, through the use of 

high-order interpolation polynomials, allowed highly 

accurate simulations (as described by Karniadakis et al. 

(1991)). A third-order time accurate technique was 

employed to model the solution of the Navier-Stokes 

equations (see Karniadakis et al. (1991)). This algorithm 

has been employed to solve similar problems previously, 

notably by Sheard et al. (2009) and Sheard and Ryan 

(2007). 

The spatial accuracy was determined at run time by 

choosing the order of the tensor-product of interpolating 

polynomials within each macro-element as is usually 

possible with finite-element schemes. In all simulations 

quoted herein 441 macro-elements were employed. A 

square domain was considered with a domain length and 

width of 100 vortex diameters. The vortex pair was 

contained within a refined region at the centre of the mesh, 
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away from this region, the mesh density was reduced to 

limit computational expense. 

RESULTS 

The Two-Dimensional Relaxation Process 

A flow field consisting of two circular vortices placed a 

finite distance apart is not a solution to the Navier-Stokes 

equations, and would not be observed experimentally. In 

order to generate an experimentally valid flow field 

numerically, the initial flow field is evolved in two-

dimensions such that the solution relaxes to a solution of 

the Navier-Stokes equations. This relaxation process is 

driven by the strain rate within the core of each vortex 

evolving due to the external strain field generated by the 

other vortex, and is an inviscid process. The process has 

been described in detail for an unequal strength vortex pair 

by So et al. (2009).  

Figure 2 shows contours of vorticity for the adapted vortex 

pair for several values of . As  0, the weaker vortex 

becomes increasingly deformed, and the profile of each 

vortex is increasingly different to that of the other vortex. 

Analytical investigations (for example Le Dizes and 

Laporte (2002)) of an isolated vortex in a strain field have 

shown that the magnitude of strain at the centre of a vortex 

is directly proportional to instability growth rate. 

Therefore, a-priori we may expect that for small , 

instabilities will grow preferentially on the weaker vortex. 

 

 

 

Figure 2: Vorticity contour snapshots for Λ= -0.1, -0.3,     

-0.7 and -0.9. Snapshots show vorticity profiles after 

relaxation. Solid and dashed lines show positive and 

negative vorticity respectively. 

 

 a1/ b a1/ a0 a2/ a0 

-0.3 0.2677 1.0958 1.2860 

-0.7 0.2731 1.1144 1.1544 

-0.9 0.2748 1.1224 1.1317 

-1.0 0.2761 1.1258 1.1258 

Table 1: vortex core size at the conclusion of the 

adaptation phase, as a function of . 

 

So et al. (2009) has shown that time required for the 

adaptation process to conclude is dependent on . Table 1 

details the core size of each vortex for selected values of 

at the conclusion of the relaxation process. We note that 

as ||  0, a discrepancy develops in the relative core 

sizes.  

 

Three-Dimensional Instability Growth Rates 

Figure 3 shows the normalized growth rate, * = tc, of 

the leading instability mode as a function of the 

normalized wave-number, ka0, for  = -0.9. This is the 

global growth rate, taking into account instability growth 

in the vicinity of both vortex cores. Three dominant 

instability modes have been identified. At low wave-

numbers, the Crow instability is observed at ka0 0.1, in 

close agreement with the analytical findings of Bristol et 

al. (2004). The normalized growth rate is slightly lower 

than their findings due to the effect of viscosity (not 

accounted for in their model).  

Two further instability modes are also observed at higher 

wave-numbers, the first, with a peak at ka0 = 2.1, is 

identified as the first solution branch of Kelvin mode (-

1,1). The second, with a peak at ka0 = 3.55, is identified as 

the second solution branch of Kelvin mode (-1,1). When 

comparing these results with Le Dizes and Laporte (2002), 

we find that both the peak growth rate for each mode, and 

the wave-number at which this occurs, agrees very well 

with the case of  = -1. Both modes have substantially 

higher growth rates than the Crow instability, and should 

dominate the flow experimentally. 

 

Figure 3: Normalized instability growth rate as a function 

of axial wave-number for Λ=-0.9. Symbols indicate 

different mode-shapes; , Crow instability;  Kelvin 

mode (-1,1,1); Kelvin mode (-1,1,2). 
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Figure 4: Normalized instability growth rate as a function 

of axial wave-number for Λ=-0.7. See figure 3 for symbol 

definitions. 

 

 

Figure 5: Normalized instability growth rate as a function 

of axial wave-number for Λ=-0.3. See figure 3 for symbol 

definitions. 

 

 

Figure 6: Contour map of normalized growth rate, *, as 

a function of ka0 and . 

 

 

(a) Λ=-0.9. Mode (-1,1,1).(b) Λ=-0.9. Mode (-1,1,2). 

 

(c) Λ=-0.9. Crow instability mode. 

 

(d) Λ=-0.7. Mode (-1,1,1)         (e) Λ=-0.7. Mode (-1,1,2) 

 

(f)Λ=-0.7. Crow instability mode 

 

   (g) Λ=-0.3. Mode (-1,1,1)       (h) Λ=-0.3. Crow            

                                                       instability mode 

Figure 7: Perturbation vorticity fields illustrating the 

mode shapes, corresponding to peak growth rates, 

identified for Λ=-0.9, -0.7 and -0.3. Wavenumbers 

considered are (a) k = 2.0, (b) k = 3.6, (c) k = 2.2, (d) k = 

3.8 and (e) k = 3.4, (f) k = 3.8, (g) k=0.8, and (h) k = 3.4. 

Contour lines represent each base-field vortex core at 0.33 

times the local peak vorticity at each vortex. Flooded 

contours represent perturbation axial vorticity, darker 

shades represent positive perturbations, lighter shades 

represent negative perturbations. 

 

Figure 4 shows the instability growth rates for  = -0.7. 

All three modes identified for  = -0.9 are observed once 

again. The Crow instability is found to have a higher 
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growth rate, and a peak growth rate at a higher wave-

number, in agreement with the findings of Bristol et al. 

(2004). The Kelvin mode instabilities are also observed to 

have peak growth rates occurring at higher wave-numbers 

when compared with  = -0.9. However, the peak growth 

rates for both Kelvin modes are reduced when compared 

with   = -0.9. This trend is continued as the circulation 

strength ratio magnitude is further reduced to  = -0.3 

(figure 5). In this case, only the Crow instability and the 

first branch of the Kelvin mode (-1,1) are observed across 

the range of wave-numbers considered. Here, the Crow 

instability peak growth rate has increased to the point 

where it is comparable to that of the Kelvin mode 

instability. The range of wave-numbers over which the 

Kelvin mode has a significant growth rate is observed to 

be much broader than that observed at higher magnitudes 

of . 

 

Figure 6 shows a contour map of normalized instability 

growth rate as a function of  and ka0. Dark bands 

represent local peaks in *, each band representing a 

different mode of instability. All Kelvin instability modes 

are observed to reduce in strength as  0, and are 

observed to have an increase in normalized wave-number. 

This is counter-intuitive, as the core radii of the weak 

vortex is greater as ||0. Therefore it is concluded that 

the increase in normalized mode wave-number as  ||0 

is due to the increasing deformation of the weak vortex 

profile as observed in figure 2. By contrast, the long wave-

length, Crow instability displays an increase in growth rate 

as  decreases, reaching a peak at  -0.2. In line with the 

short wave-length Kelvin modes, the Crow instability also 

exhibits an increase in normalized  wave number with 

decreasing . When  -0.2, the Crow instability is noted 

to share the same normalized wave number as the first 

branch solution of Kelvin mode (-1,1). Below  -0.2 

only one instability mode solution is observed to occur. 

The mode shapes for each instability, calculated at the 

normalized wave-number corresponding to maximum 

growth, are shown in figure 7. The flooded contour images 

have been generated by subtracting the axial perturbation 

vorticity field, z, measured at a plane along the vortex 

axis, from z measured on another plane placed a distance 

2/ka0away. This allows us to identify all the relevant 

mode structures from analysis of a two dimensional field.  

Figure 7a,b and c shows the instability mode-shapes for  

= -0.9. As both vortices have very similar circulation 

strengths, we would expect that the instability mode 

shapes be almost identical on each vortex. This is indeed 

the case for the Crow instability (figure 7c), which induces 

a sinuous oscillation along the axis of both vortices. The 

mode structure of the Crow instability is observed to occur 

on a scale larger than the vortex core, with a peak in z 

observed on the vortex core radius. The growth of the 

Crow instability is observed to be slightly reduced on the 

strong vortex. By contrast, the Kelvin modes show 

reduced growth in the strong vortex when compared with 

the weak vortex. This is especially apparent in the second 

solution branch of the Kelvin mode (-1,1). It is postulated 

that the reduction in perturbation strength acting on the 

strong vortex is directly linked to the scales included in the 

instability mode-shape. The long wavelength Crow 

instability has a very simple structure with large scales in 

all three dimensions. By contrast the Kelvin modes have 

smaller scale structures and are highly dependent on the 

profile of the base vortex. 

The strain at the centre of the strong vortex decreases with 

||. Thus, for the case  = -0.7, the perturbations do not 

develop as vigorously on the strong vortex, when 

compared with the case of  = -0.9. Indeed, at  = -0.7, 

only the Crow mode develops any appreciable 

perturbations on the strong vortex. Comparing  = -0.7 

with  = -0.9, it is interesting to note that the mode-shapes 

in the weak vortex have not altered appreciably with . 

As || is further reduced to  = -0.3, only two instability 

modes are observed. Considering figure 6, we note that for 

|| < 0.5, the normalized wave-number where the  second 

solution branch of the Kelvin mode grows is identical to 

the normalized wave-number where the first solution 

branch of the Kelvin mode grows. Given the higher 

growth rate of the first solution branch of the Kelvin 

mode, it is not surprising that the second branch solution is 

not observed for  = -0.3. The mode structure for the first 

solution branch of the Kelvin mode only appears on the 

highly strained, weak vortex. The strain of the base field 

has appreciably altered the mode shape. This is also 

apparent for the Crow instability that also grows more 

strongly on the weak vortex in preference to the strong 

vortex. 

A three-dimensional representation of the instability mode 

may be obtained by adding the perturbation field, 

magnified by an arbitrary factor, to the base field. An 

example of this is shown in figure 8, for the first branch 

solution of the Kelvin mode (-1,1), for  = -0.9. The 

figure clearly identifies the sinuous oscillation induced by 

the instability mode acting along the axis of both vortices.  

 

Figure 8:  A three-dimensional representation of the 

instability mode (-1,1,1) for  = -0.9. 

DISCUSSION 

Large wavelength Crow instabilities begin to dominate as 

|| < 0.3. We note an increase in growth rate and critical 

wave-number for this mode for smaller ||, in agreement 

with analytical findings of Bristol et al. (2003). Analytical 

evaluations of the Crow instability do not consider the 

effects of highly deformed core profile on the 

development of the mode. In line with their findings the 

severe deformation of the weak vortex noted for small || 

has little influence on the mode development. 

By contrast, the growth of the short-wavelength Kelvin 

modes is highly dependent on the vortex profile. Slight 

deviations away from ||=1 results in a significant 
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asymmetry in instability mode development across the 

vortex cores. We note that even for  = -0.9, a significant 

difference is noted in the amplitude of the perturbation 

mode-shape growing on the weak vortex by comparison to 

the strong vortex. This is especially apparent for the 

second branch of mode (-1,1), which has the most 

complicated structure.  

In closing it should be stated that the linear instabilities 

observed do not any cause appreciable reduction in the 

coherence of either vortex core. However, they are the 

leading instability modes in a cascade that is expected to 

significantly increase the variation of the vortex pair along 

their axis. The linear perturbation mode-shape is critical to 

further non-linear instability developments. Enhanced 

dissipation of a vortex pair requires the development of 

instability modes on both vortex cores. In the absence of 

this, one vortex will remain coherent while the other is 

destroyed.  

Further DNS investigations are required to elucidate the 

non-linear instability growth that occurs beyond the linear 

growth period, this work is continuing. 

CONCLUSION 

Three instability modes have been identified across the 

range -1 << 0. These modes are equivalent to instability 

modes described in previous studies of equal strength 

counter-rotating vortex pairs. However, in this case, 

Kelvin mode instabilities are observed to grow 

preferentially on the weak vortex, and the global growth 

rate of these Kelvin modes reduces as ||0. By contrast 

the long wave-length Crow instability exhibits an increase 

in growth rate as || is reduced. In addition, the Crow 

instability exhibits strong growth on both vortex cores 

down to  = -0.3. These linear instability modes may lead 

to enhanced dissipation of the vortex pair.  
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