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ABSTRACT 
Computational modelling of the flow of fluids in porous 
media has traditionally been at a macroscopic level where 
the medium’s permeability and porosity are an input (from 
experiments for example). In many cases this is difficult, 
especially if the porous medium changes its solid structure 
as a function of time. This situation occurs in reactive 
systems such as “heap-leaching” where biological and/or 
chemical solutions are introduced into the heap to dissolve 
or react with valuable materials. In this case, modelling 
fluid flow at the grain level is paramount and we show 
how this can be done with the SPH technique. We present 
three-dimensional SPH simulations of fluid flow in an 
idealised porous medium and show that the technique 
yields flows which are physically realistic. The 
permeability of the medium is then predicted.  

NOMENCLATURE 
L characteristic length 
P pressure 
v  velocity 
ρ density 
μ dynamic viscosity 

INTRODUCTION 
Porous media flow is important in a number of areas such 
as oil recovery, groundwater flow, carbon sequestration, 
flow in biological materials and recovery of valuable 
minerals (or metals) from ores via the process of heap-
leaching. In each case, one is interested in how the 
structure of the porous medium affects the fluid flow. 
Generally these flows have low Reynolds number (Bear, 
1972), where μρ /Re Lv≡ , where ρ is the fluid density, L 
is a typical length scale for the flow, ν is the typical fluid 
speed and μ is the fluid viscosity. For these low Re, the 
flow is in the laminar regime and its macroscopic 
behaviour can be described by Darcy’s Law: 

Pkv ∇=
μ

                                                      (1) 

where P is the pressure and k is the permeability of the 
medium.  
In this study we model fluid flow in a representative 
porous medium at the grain-scale. By doing this we would 
like to be able to calculate the permeability without 
making any a priori assumptions. To date there are only 
two other published works which have used SPH methods 
to determine the permeability of a porous medium from 
first principles. They are the studies by Zhu, Fox and 
Morris (1999) and by Jiang, Oliveria and Sousa (2007).   

The study by Zhu et al (1999) considered a two-
dimensional (2D) porous medium made up of circular, 
solid particles either arranged in a square or hexagonal 
array. This corresponds to fluid flow around long fibres. 
They were able to compute the discharge velocity as a 
function of the applied pressure gradient and found that it 
followed a linear relationship. From the gradient of this 
linear relationship they evaluated the medium’s 
permeability. They compared their SPH simulations with 
Finite Element calculations and found good agreement.  
The second work by Jiang et al (2007), considered flow 
through a slit, with the slit placed at a sequence of angles 
with respect to the applied pressure gradient. This angle 
was varied from zero (parallel to pressure gradient) to 90 
degrees (orthogonal to the pressure gradient). Once again 
this was a two-dimensional study. They were able to 
compute the average fluid velocity as a function of the 
applied pressure gradient and found that this also followed 
a linear relationship. From this they determined the 
medium’s permeability. These results were then compared 
to the Blake-Kozeny-Carman (Bear, 1972, Faber, 1995) 
theoretical predictions and good agreement was found.  
Our study continues the development of the SPH method 
by considering flow in a three-dimensional (3D) porous 
structure. It is well known that permeability of 3D media 
is quite different to 2D because the extra dimension results 
in a vast increase in the number of possible flow paths. 
We note here that a current technique popular for 
obtaining permeabilities for porous media flow is the 
Lattice-Boltzmann (LB) method. See for example Chen 
and Doolen (1998) or Heijs and Lowe (1995). 

SPH METHOD 
The SPH method is reviewed in detail by Monaghan 
(2005). The method starts with the interpolation of any 
function A at any position r using SPH smoothing which 
is given by: 

( ) ( )∑ −=
b

b
b

b
b hWAmA ,rrr
ρ

 ,    (2) 

where mb and rb are the mass and density of particle b and 
the sum is over all particles b within a radius 2h of r. Here 
W(r,h) is a C2 spline based interpolation or smoothing 
kernel with radius 2h that approximates the shape of a 
Gaussian function. The gradient of the function A is given 
by differentiating the interpolation equation (2) to give: 
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Using these interpolation formulae and suitable Taylor 
series expansions for second order derivatives, any 
parabolic partial differential equations can be converted 
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into ordinary differential equations for the motion of the 
particles and the rates of change of their properties.  
The SPH continuity equation, taken from Monaghan 
(1994, 2005) is: 

( )∑ ∇•−=
b

abbab
a Wm

dt
d vvρ              (4) 

where ρa is the density of particle a with velocity va and 
mb is the mass of particle b. We denote the position vector 
from particle b to particle a by baab rrr −=  and let 

( )hWW abab ,r=  be the interpolation kernel with 

smoothing length h evaluated at distance abr . This form 
of the continuity equation is Galilean invariant (since the 
positions and velocities appear only as differences), has 
good numerical conservation properties and is not affected 
by free surfaces or density discontinuities.  
The SPH method used here is quasi-compressible and an 
equation of state is used to specify the relationship 
between particle density and fluid pressure. A form 
suitable for incompressible fluids is: 
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where P0 is the magnitude of the pressure and ρ0 is the 
reference density (Monaghan, 1994, 2005). For water and 
similar fluids γ =7. 
The momentum equation when converted to SPH form 
becomes the acceleration for each particle a:  
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where Pa and μa are pressure and viscosity of particle a 
and baab vvv −= . Here ξ  is a factor associated with the 
viscous term (Cleary (1998)), η is a small parameter used 
to smooth out the singularity at rab = 0 and g is gravity. 
The pressure scale factor P0 is given by: 

2 20

0

100P V cg
r

= =           (7) 

where V is the characteristic or maximum fluid velocity 
and c is the speed of sound. This means that the sound 
speed is ten times the characteristic speed. This ensures 
that the density variation is less than 1% and that the flow 
is close to incompressible. The speed of sound is much 
less than the actual (physical) speed of sound so as to 
increase the numerical time-step. 
As two particles approach each other, their relative 
velocity is negative (as is the gradient of the kernel) so 
that there is a positive contribution to dtd a /ρ . If this rate 
of change is positive then the density of particle a rises. 
This leads to a positive pressure that pushes the particles 
apart again. If two particles move apart, then their 
densities decrease creating a negative pressure that pulls 
the particles back towards each other. This interplay of 
velocity and density/pressure ensures that the particle 
remains “on average” equally spaced and that the density 
is close to uniform, so that the fluid is close to 
incompressible. 

To simulate confined or partially confined fluid flow, such 
as is typically found in industrial and geophysical fluid 
flows, the modelling of physical boundaries is important. 
Boundaries in SPH can be modelled in a range of ways, 
but here we use approximately evenly spaced SPH 
particles at which a Lennard-Jones type force (a very 
steep polynomial potential relating the force with the 
displacement into the boundary) is applied in the normal 
direction. In the tangential direction, the boundary 
particles are included in the summation for the shear stress 
using equation (6) (with the pressure gradient term set to 
zero) to give non-slip boundary conditions on the walls. 

SPH POROUS MEDIA CONFIGURATION 
In this work we seek to model flow around individual 
(pore-sized) grains. To do this we model the solid grain as 
a sphere made up of stationary SPH particles. The sphere 
has diameter D and is placed in a cube of fluid with side-
length L. Periodic boundary conditions are imposed in all 
three directions at the edges of the fluid cube. The 
remainder of the region is filled with fluid particles. The 
density of the fluid used is 1000 kg/m3 and the viscosity is 
1 Pa.s. In all the cases reported the solid particle has a 
diameter of 4 mm. We estimate the Reynolds number for 
the flow to be of the order of 0.001 to 0.1, given the 
average flow velocities are in the range of 0.001 to 0.1 m/s 
and a characteristic length scale of 1-10 mm. The 
important length scale here is the distance between 
particles, rather than particle size, since it is this distance 
which has the dominant effect on the flow. No-slip 
boundary conditions are implemented at the solid sphere 
boundary. Gravity (or a constant body force) is imposed 
downward along the z direction and this drives the fluid 
flow. This set-up was also implemented for 2D flow, by 
replacing a solid circle (of diameter 4 mm) for a sphere 
and a square of fluid for the cube. 
The two-dimensional simulations represent flow around a 
pack of cylinders, for example flow around long fibres 
while the three-dimensional simulations represent flow 
around a periodic cubic array of spherical grains. Initially, 
simulations were run in 2D with a number of different 
fluid particle sizes to test resolution dependence. We then 
monitored quantities such as kinetic energy of particles, 
fluid density and particle velocities to determine the 
largest fluid particle size at which these quantities did not 
show significant changes. By doing this we are able to 
achieve accurate results in a reasonable time. 

FLUID FLOW RESULTS 
We first consider 2D simulations primarily to decide on 
the resolution for further simulations. In all simulations 
reported in this paper the speed of sound is set at 10 m/s.  
Figure 1 shows the fluid velocity at different times for a 
driving acceleration of 9.8 m/s2 downwards. The square 
has side length of L = 14 mm giving a solid volume 
fraction of 0.064 and the fluid particle size is 0.25 mm. 
Initially all fluid particles are at rest and over time 
maximum flow velocities appear in the gap (red coloured 
particles) between the solid particle and its periodic image 
while above the solid particle the fluid velocities are 
small. The time taken to reach a stable velocity profile 
(which is determined by the competition between the 
gravitational force and viscous drag) is 0.3 s. 
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To make a suitable resolution study we ran a number of 
simulations for different fluid particle sizes from 0.28 mm 
down to 0.1 mm. Figure 2a shows the fluid velocity for 
the case of a resolution of 0.1 mm. The steady-state limit 
is around 0.13, which is slightly larger than for the much 
coarser 0.25 mm resolution. To make a quantitative 
comparison of the effect of fluid resolution we monitored 
the average kinetic energy over all the particles as a 
function of time. Here we observed that by about 0.2 s this 
reaches a plateau value (steady-state conditions) which 
was approximately 0.55 mJ.  

Figure 1: Fluid and solid particle distribution at three 
different times: (a) t = 0 s, (b) at t = 0.2 s, and (c) t = 2.0 s 
for 2D simulation with L = 14 mm. Particles are coloured 
by velocity from blue (stationary) to red (0.11m/s 

Fig. 2b shows the steady state value of the average kinetic 
energy for different resolutions. It is almost constant over 
the entire range, so a resolution of 0.25 mm is suitable for 
giving sufficiently accurate results. However, it is 
important to note that as the separation between solid 
grains decreases the fluid particle size also needs to 
decrease so that fluid particles can access the decreasingly 
small crevices between solid grains. In all subsequent 
simulations we monitored relevant quantities (such as 

average particle velocities, kinetic energies etc) to ensure 
resolution was adequate. 

Figure 2: (a) Fluid and solid particle velocities for a 2D 
simulation (L = 14 mm) with fluid particle size of 0.1 mm. 
The maximum velocity (red) is 0.15m/s. (b) Average 
steady-state kinetic energy as a function of fluid particle 
size in 2D simulations. 

3 dimensional simulations 
In 3D, we initially consider the case where the solid 
volume fraction is 0.012 (which is a small solid fraction 
but results here are typical of all simulations). The fluid 
particle size for all simulations in this section is 0.25 mm. 
We impose a body force (per unit mass) of 9.8 m/s2 
downwards. The density variation throughout this 
simulation was less than 0.1% indicating the fluid is 
virtually incompressible.  Figure 3a shows the particle and 
velocity distribution after the system has reached steady-
state conditions. One slice is displayed which is a fluid 
particle spacing thick in the x-z plane and located at the 
centre of the periodic cell. The colour of particles 
represents their velocity from blue (stationary) to red 
(0.4m/s). The flow is similar to that described for the 2D 
case, with high velocities in the gap between solid grains 
and lower velocities just above and below the solid grain.   
For purposes of determining a medium’s permeability we 
are interested in the average steady-state fluid velocity. To 
calculate this we consider a (virtual) plane which is 
perpendicular to the gravity vector and calculate the 
velocity, averaged over all particles passing through this 
plane at any particular instant, as a function of time. We 
chose two such planes, the first one placed through the 
centre of the solid grain and the second one just below the 
solid grain. The velocity through these planes is shown in 
Fig. 3b and tends to equilibrate after about 0.2 s. The light 
blue curve is for the plane that goes through the centre of 
the solid grain while the pink curve corresponds to the 

t = 0.0 s 

t = 0.2 s 

t = 2.0 s 

a) 

b) b) 

c) 

a) 

b) 
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plane just below the solid grain. Since fluid particles have 
a smaller cross-sectional area to pass through when 
flowing around the solid grain, to conserve fluid 
incompressibility they must move correspondingly faster. 
Hence the average velocity of particles passing through 
this plane is slightly larger than for the plane placed just 
below the solid grain. The difference in average fluid 
velocity between these two planes is, however, quite small 
and we can take an average of these quantities for the 
overall (average) fluid velocity.  

a)  

b) 
Figure 3: (a) Steady-state fluid velocity distribution in 3D 
for a solid fraction of 0.012, and (b) average flow velocity 
through two planes which are orthogonal to gravity. The 
first plane goes through the centre of the solid grain while 
the second plane is just below the solid grain. 

Simulations were also run for body forces per unit mass of 
4.9, 2.45, 1.23 and 0.61 N/kg giving flow velocities in the 
same way as was shown in Fig. 3a. Fig. 4a shows these 
steady-state flow velocities as a function of imposed body 
force. In addition to the points from simulations we also 
know that with a zero body force there is no flow. Since 
the flow is laminar we expect to find a linear relationship. 
The best fit line that goes through these points has 
gradient 0.034 s. Note that the permeability is related to 
the imposed body force per unit mass, Fb, and average 
velocity, u , via 

u
F

k
bρ

μ
= .                                         (8) 

Since our fluid viscosity is 1 Pa.s and density is 1000 
kg/m3 this yields a permeability of k = 3.4x10-5 m2. 
 Simulations were performed in 3D for a number of 
different fluid volumes, i.e. decrease the edge length of 
the periodic cube in regular steps (of 2 mm) from L = 14 
mm to 8 mm. In each case, a series of different body 
forces were used and the average steady-state flow 
velocity was determined. These are plotted in Fig. 4a 

along with a line of best fit. The average steady-state 
velocity is clearly a linear function of the imposed body 
force, which is in agreement with Darcy’s Law (Eq. 1). 
Moreover, the gradient of the graph is related to the 
permeability of the medium and hence we have 
demonstrated that we can determine, from first principles, 
the permeability of a 3D medium using SPH simulations. 
The numerical values of the permeabilities derived from 
these simulations are plotted in Fig. 6.  

Figure 4: Average flow velocity after equilibrium steady-
state conditions have been reached versus imposed body 
force per unit mass. (a) For 3D cases at different solid 
volume fractions of 0.012 (circles), 0.019 (squares), 0.034 
(diamonds), and 0.065 (triangles). (b) Average steady 
state flow velocity for 3D simulation with solid volume 
fraction of 0.155 (circles), 0.393 (squares) and 0.5236 
(triangles). 

3 dimensional simulations - large solid fraction 
The solid volume fractions used so far have been quite 
small (less than 0.1) while in most porous media one 
would expect this to be much larger. In the present set-up 
the maximum solid fraction we can reach is 0.5236 for the 
case where the spheres touch. However, simulating at this 
level requires us to have a much finer particle resolution 
otherwise fluid particles cannot access regions where solid 
grains touch.  In each of the following simulations we 
decrease the fluid particle size until we are sure we are 
obtaining accurate results. We do this by monitoring the 
average fluid velocities and kinetic energies and make 
sure they do not fluctuate appreciably (after reaching 
steady state). Thus for the simulations reported in this 
section we use a fluid particle size of 0.1 mm. 

a) 

b) 
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Figure 5: Snap-shots (in the x-z plane) of the fluid and 
solid particle distribution at steady-state conditions at 
three different slices for maximum solid fraction of 0.5236 
and a body force of 9.8 m/s2: At (a) y = 0, (b) y = 1 mm 
and (c) y = 2 mm. The colour of particles represents their 
velocity from blue (stationary) to red (large velocity). 
Note, even though there are some red-coloured particles 
near the solid boundary in c) these velocities are very 
small and the no-slip condition is still valid. 

Fig. 5 shows vertical slices of the flow field after steady 
state has been reached for the case with a driving force 
(per unit mass) of 9.8 N/kg. We verified steady-state 
conditions had been achieved by monitoring the average 
fluid velocity and observing that it had reached a plateau. 
In Fig. 5a, which corresponds to a vertical plane through 
the middle of the solid grain, fluid is mostly stationary 
(blue), since in this plane the solid grains touch.  Here 
fluid cannot move at any appreciable speed in the 
direction of the gravity vector. The next slice (Fig. 5b) 
cuts through part of the solid grain and hence fluid 
particles in this plane still have a small velocity. Finally in 
Fig. 5c we show a slice at the extremity of the solid grain. 
In this plane fluid has a comparatively unrestricted flow 

path and so the fluid velocity is maximal, although still 
quite small (of the order of 0.001 m/s) compared to the 
previous cases reported. 
Once again we predicted the permeability for this solid 
fraction (by running simulations at a variety of body 
forces) and found the permeability to be 1.3x10-7 m2 (see 
Fig. 4b). Hence, we have shown the SPH method is 
applicable to real porous media with realistic solid 
fractions. 

THEORETICAL PREDICTIONS 
At low solid fractions, the fluid flow becomes more like 
an infinite fluid flowing around an isolated solid grain.  
This is the Stokes limit where the fluid drag is Dvπμ3 . 
We are not quite at this infinite limit in our simulations 
even at low solid fraction. For us the fluid drag on a solid 
grain is modified by the flow and pressure effects of the 
surrounding particles in the lattice.  The geometry of our 
simulations is that of a periodic array of spheres in a 
simple-cubic packing. Theoretical predictions from the 
permeability for this geometrical construction have been 
worked out numerically by Hasimoto (1959) at low solid 
fractions and by Zick and Homsy (1982) for high volume 
fractions. Note, that in this set-up the highest obtainable 
solid fraction is 0.5236. The Blake-Kozeny-Carman 
relationships, which assume a porous medium is 
composed of a bunch of capillary tubes of equal length 
(Bear, 1972, Faber, 1995), is  appropriate for a random 
array of spheres rather than a regular/periodic array of 
spheres. 
Hasimoto (1959)  obtained a perturbation solution (in 
terms of Fourier series) for Stokes flow of an 
incompressible viscous fluid past an array of regularly 
ordered spheres. The expansion was made in terms of 
fractional powers of the solid fraction and is thus limited 
to relatively small solid fractions. In fact Hasimoto gave 
his results in terms of the fluid drag on each sphere and 
wrote his results as  

)(3)( sDsdrag fDvCfF πμ=  ,   (9) 

and CD is called the drag coefficient and is a function of 
the solid fraction fs. Thus CD is 1 in the limit of an 
infinitely large fluid volume and increases as fs  increases.  
To obtain a permeability from this we need to obtain the 
force per unit mass of fluid. The mass of fluid in our 
simulations is )6/()1(3

ss ffD −πρ . Thus the fluid drag 
(per unit mass of fluid) is  

ρ
μv

fD
fCF

s

sD
drag )1(

18
2 −

= .                       (10) 

Comparing this equation with Eq. 8 gives us the 
permeability as  

( )
sD

s
theory fC

fDk
18
12 −

=       .                         (11) 

Zick and Homsy (1982) used a numerical method, based 
on reducing the Stokes partial differential equations to a 
set of integral equations and then using a Galerkin method 
to solve these equations. Their results are also expressed 
in terms of a fluid drag coefficient (Eq. 9) and hence the 
permeability can also be expressed as Eq. 11, but with a 
different value of the drag coefficient (compared to 
Hasimoto). The numerical result of Zick and Homsy is 
essentially the same as Hasimto’s result for solid fractions 
less than 0.065, but shows increasing deviations at higher 
solid fractions. 

a) 

b) 

c) 
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This permeability is a monotonic decreasing function of 
solid fraction and for small solid fractions is inversely 
proportional to fs.. Permeabilities calculated by this 
method are compared with SPH in Fig. 6. We see good 
overall agreement (Fig. 6a). Zooming into the region of 
higher solid fraction we see there is a small deviation 
around solid fractions of 0.1. 
 

 

 
Figure 6: Comparison of permeability from the two 
methods described in this study as a function of solid 
fraction. Black circles correspond to SPH simulations. The 
red curve corresponds to the theoretical predictions of 
Zick and Homsy (1982). In (a) we show the entire range 
of solid fractions simulated and in (b) we zoom into the 
higher solid fraction region. 

Comparisons between theoretical predictions and SPH 
We have been able to estimate the permeability of 
idealized three-dimensional porous media from first 
principles using the SPH method. In principle this method 
can be extended to a medium with many more grains 
although, clearly, the method is limited by computational 
considerations. Looking at Fig. 4 it is clear the average 
fluid velocity is a linear function of the imposed body 
force. This is as one would expect in the laminar case, i.e. 
it follows Darcy’s Law. This is reassuring and tends to 
lend support to the validity of the results of the SPH 
method. All predictions agree qualitatively in that the 
permeability decreases with increasing solid fractions.  
The overall agreement between SPH permeability 
predictions and the theoretical predictions is relatively 
good and validates the implementation of SPH for 
obtaining permeabilities in simple porous media 
geometries. 

CONCLUSION AND FUTURE DEVELOPMENTS 
We have modelled flow through an idealized three-
dimensional porous medium using the SPH technique. As 
this is a first principle type study we have used a very 
simple model of the porous medium - flow around a single 
solid particle in a cubic cell with periodic boundary 
conditions at the edges. We have found the flow rate is a 
linear function of the imposed body force, which obeys 
Darcy’s Law for laminar flow, and from this we have been 
able to estimate the medium’s permeability. The SPH 
estimates of the permeability, are in qualitative and 
relatively good quantitative agreement with theoretical 
calculations based on solving Stokes equation in the 
presence of a periodic array of solid spheres.  
The present SPH method can easily be used for solid 
particles of arbitrary shape and size. All that requires to be 
done is to construct digital images of the solid particle 
surface which would then be imported into our SPH code. 
As such, we can obtain the local permeability of an 
arbitrarily complex porous medium. Another important 
development of this procedure would be to use in cases 
where the solid particles change in shape and size.  This is 
particularly relevant to applications such as heap-leaching. 
In principle, the modelling of a liquid which flows through 
a porous medium which dynamically changes due to the 
flow of the liquid can be implemented with an SPH 
technique. In fact SPH would be highly suitable for this 
process because each fluid and/or solid particle 
(individually) can carry additional information such as its 
acid concentration or whether it is moving.  
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