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ABSTRACT 
Fluidized bed spray granulation is used to produce porous 
granular particles from suspensions and solutions. 
Experimental investigations and modelling of the 
mechanisms revealed that the fluid dynamics in the 
granulator, in particular in the jet flow, which causes the 
particle movement as well as drop propagation and 
deposition on the particles, play a crucial role. Therefore, 
in this work the “Two Fluid Model” (TFM) is used to 
simulate the fluid dynamics in the fluidized bed and the 
jet. The simulated results were validated by measuring the 
particle velocity with Laser Doppler Velocimetry (LDV). 
The growth kinetics can be obtained by modelling the 
growth mechanisms like droplet deposition, dust 
integration and particle drying with the “User-defined 
Functions”. The population balance approach is used to 
describe the transient granulation process and the particle 
growth. The Quadrature Method of Moments (QMOM) is 
adopted as a solution method for the population balance in 
this work. The coupled simulation of CFD and population 
balances allows a complete description of the process. 

NOMENCLATURE 
CD drag coefficient 
d diameter 
ess restitution coefficient 
g gravitational acceleration 
g0,ss radial distribution function 
GL growth rate 
h adhesion probability 
mk kth moment 
p pressure 
v
r

 velocity 
α  volume fraction 
ϕ  impingement efficiency 
η  deposition efficiency 

sλ  bulk viscosity 
μ  dynamic viscosity 

sΘ  granular temperature 
ρ  density 
σ  surface tension 

τ  strain tensor 

Dimensionless number 
Oh Ohnesorge number 
Re Reynolds number 
St Stokes number 
We Weber number 

INTRODUCTION 
In this process the suspension is atomized by a nozzle and 
injected into a fluidized bed with the same material. The 
droplets are deposited on the surface of the particles and 
form a film which is dried with the hot fluidization air to 
build a solid layer. Due to the high velocity of the jet flow 
the particles circulate between a near-nozzle zone, where 
the particles are humidified, a freeboard above the jet flow 
and the remaining fluidized bed, where the particles are 
dried. Several mechanisms are important for this process. 
Seed particles can be formed from small dust particles and 
droplets, then grow to become nuclei, which remain in the 
fluidized bed and grow to particles of desired product size 
range. Surely negative growth due to breakage and 
attrition can also take place. On account of the 
rudimentary knowledge of the interaction of the single 
mechanisms, design of such a process is based primarily 
on experience and know-how. Hence, the research in this 
area is aimed at the understanding of the process. The 
coupled simulation of CFD and population balance 
enables us to find suitable process parameters and to 
predict the particle properties, like particle size 
distribution. 
 

 
Figure 1: Schematic diagram of plant geometry. 

MATHEMATICAL MODEL 
In the “Two Fluid model” the fluid phase and the solid 
phases are treated as interpenetrating continua by 
incorporating the concept of phase volume fractions qα . 
The summation of the volume fractions must be 1. 
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The conservation laws of mass and momentum must be 
solved for every phase to account for the interphase 
forces. 

Conservation of Mass 
The continuity equation for each of the phases is: 
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Conservation of Momentum 
The momentum balance for phase q yields  
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where qF
r

 is the external body force, qliftF ,

r
 is the lift force, 

qvmF ,

r
 is the virtual mass force. In this investigation the lift 

force and virtual mass force are neglected. 

τ  is the stress strain tensor of the qth phase 
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I  is the unit tensor. qμ and qλ are the shear and bulk 
viscosity of the solid phase q and they are discussed in the 
next section on the kinetic theory of granular flow. The 
moment transfer coefficient was calculated with 
Gidaspow’s model.  
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To avoid the discontinuity of the two equations, Gidaspow 
introduced a switch function that gives a rapid transition 
from one regime to the other. 
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The drag coefficient depends on the Reynolds number and 
is expressed as 
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Kinetic Theory of Granular Flow 
The granular temperature for the solid phase sΘ  is 
proportional to the kinetic energy of the random motion of 
the particles. The transport equation derived from kinetic 
theory takes the form 
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the solids stress tensor, ssk Θ∇  describes the diffusion of 
energy, the diffusion coefficient sk is expressed as  
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and sΘ⋅γ  is the collisional dissipation of energy. 
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The restitution coefficient was assumed to be 0.9. The 
radial distribution function was calculated by the Lun’s 
model: 
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The solids stress tensor contains shear and bulk viscosities 
arising from particle momentum exchange due to 
translation and collision. A frictional component of 
viscosity can also be included to account for the viscous-
plastic transition that occurs when particles of a solid 
phase reach the maximum solid volume fraction. The 
collisional and kinetic parts, and the optional frictional 
part, are added to obtain the solids shear viscosity:  

fricskinscolss ,,, μμμμ ++=       (13) 
The collisional part of the shear viscosity is modelled as 
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The following optional expression from Gidaspow et al. is 
for the kinetic part 
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The solids bulk viscosity accounts for the resistance of the 
granular particles to compression and expansion. 
According to Lun et al., this property can be described by: 

( )
π

ραλ s
sssspsss egd

Θ
+= 1

3
4

,0
2     

 (16) 

Droplet Deposition 
Following Loeffler (1988), the deposition efficiency η  
can be split into two parts, the impingement efficiency ϕ  
and the adhesion probability h. The impingement 
efficiency describes the ratio of the number of droplets 
which actually collide with the particle to the number of 
droplets in the total projection area of the particle. It can 
be expressed as a function of the Stokes number and the 
Reynolds number.  

 
Figure 2: Droplet deposition 
 
The deposition efficiency of droplets on one particle is: 

h⋅= ϕη          (17) 
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where a and b are empirical parameters, which are 
constant in different intervals of the Reynolds number 
(Appendix A). The adhesion probability can be estimated 
with the approach of Mundo (1995). A critical collision 
velocity depending on material properties can be 
calculated. If a droplet has a velocity lower than the 
critical velocity, it will spread on the surface of the 
granules. Above the critical velocity, it will be atomized 
or rebound. The critical velocity is described as a function 
of the Ohnesorge number Oh. 
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The Ohnesorge number is defined as 
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where trμ and trσ  are the viscosity and the surface tension 
of the droplets. Due to geometrical aspects, the adhesion 
probability can be calculated with the projected area of the 
granule surface (Zank 2001): 
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The droplet deposition in a packed bed can be calculated 
as below 
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In order to obtain a discretized form of the equation, the 
differential height dh is linked to an equivalent cell size 
with the residual time in the corresponding cell. The 
deposition efficiency in a cell can then be calculated by 
integration of the equation above. 
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Population Balance approach 
The simplest experimental test case is a semi-batch 
granulation, where the granules grow only due to droplet 
deposition. The number of granules (the 0. moment) is 
conserved. In the Two Fluid Model, the droplet deposition 
is only calculated for a monodisperse system, therefore the 
particle growth rate is not a function of particle size, but 
of time. The growth rate can be calculated as the solid 
volume in the deposited droplets divided by the total 
surface of particles in the granulator. 
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where Np is the particle number and D the total deposition 
efficiency over all cells. The population balance is solved 
in this work with the Quadrature Method of Moments 
(QMOM). The transport equations of moments are as 
follows: 
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The particle size distribution was reconstructed from the 
first N moments with the statistically most probable 
distribution (Pope, 1979). The PSD can be expressed as  
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The equation for the kth moment is written as: 
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For given N moments, the coefficients Ai can be found to 
reconstruct the PSD. 

MESH AND BOUNDARY CONDITIONS 
For the two phase system a 2D axis-symmetric model was 
adopted. Due to the nozzle geometry, the swirl flow at the 
orifice can not be neglected. In order to get the boundary 
conditions for the 2D calculations at the orifice, a 
complete 3D model was created. With this model the fluid 
dynamics of the air in the nozzle and the orifice was 
simulated.  

 

  
Figure 3: 3D grid of nozzle and granulator 
 
The nozzle configuration is shown in Figure 3. There are 6 
skewed slits in the nozzle, which cause a high tangential 
velocity of 120 m/s at the orifice. This stabilizes the jet 
and enhances the atomizing effect. The measurement of 
the velocity close to the orifice is difficult to realize. With 
the help of the 3D simulation the three components of the 
air velocity at the orifice can be obtained and can be used 
as the boundary conditions for the 2D simulations. The 
nozzle was meshed separately since it is very small 
compared to the whole apparatus. In the 2D grid the 
nozzle was created with the simplification that the nozzle 
is just treated as a jet hole with the boundary conditions 
mentioned above. The detailed nozzle geometry was 
neglected. This is based on the assumption, that in a 
certain distance from the orifice, the flow is independent 
of nozzle itself as long as the boundary conditions are 
correct. A pave mesh method was used to mesh the face in 
order to reduce the number of cells. The simulations of the 
same pave mesh with significantly more cells and of the 
mapped mesh (Appendix B) yield similar results. The 
mesh was finer at the orifice and gradually coarser in the 
free board.  

 
Figure 4: 2D grid pave mesh (cell number = 5200) 
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The boundary conditions and models to describe the 
granular phase are listed in Table 1 and Table 2 

boundary 2D 
boundary 
conditions 

nozzle air Mass-flow inlet 
12 kg/h 
30°C 

fluidizing 
air Mass-flow inlet 

105 kg/h, 
100°C 

outlet Pressure outlet  

side wall Wall  adiabatic 

Table 1: boundary conditions 

 

parameter model and constant 

particle diameter 650 mμ  

particle density 1700 kg/m3 

bulk viscosity Lun et al. 

granular viscosity Gidaspow 

radial distribution Lun et al. 

solid pressure Lun et al. 

drag force Gidaspow 

packing limit 0.63 

restitution coefficient 0.9 

Table 2: parameters and models to describe the granular 
phase 

EXPERIMENTS 
A Laser Doppler Velocimeter (LDV) was used to measure 
the velocity of the particles in the jet flow. The particles 
were classified by sieving with mesh sizes of 630 and 700 
μm. The Sauter mean diameter of the particles was 650 
μm. The bed mass was 1000g. Figure 5 shows the 
experimental configuration.  

  
Figure 5: Experimental configuration 

RESULTS 
The simulations were always performed twice with the 
same mesh. One simulation was carried out based on the 
assumption, that the energy of the particles dissipates 
locally and the granular temperature therefore could be 
calculated analytically. This simulation can be used as the 

initial condition for the second simulation with the 
transport equation for granular temperature. During all the 
simulations, the particle velocities oscillated due to 
unsteady behaviour, so that the velocity at each point had 
to be averaged. The Reynolds Stress Model was adopted 
to model the turbulence in the granulator. The simulated 
and experimental results of the vertical particle velocity at 
a distance of 70 mm above the orifice are shown in Figure 
6. The maximum vertical particle velocities in the middle 
of the jet agree well with the measured values in the case 
where the transport equation of granular temperature was 
not solved, but the width of the jet is smaller than the 
measured. The results of the simulation with considering 
the granular temperature equation agree better with the 
measurement with respect to jet width, but the maximum 
velocities in the middle of the jet flow is underestimated. 
However the deviation between measurement and 
simulation is always smaller than 20%. 
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Figure 6: Vertical particle velocities from simulations and 
experiment (70mm above nozzle orifice) 
 
The differences between these two calculations can be 
seen clearly from the velocity contour plots. 

 
Figure 7: Velocity contours with and without solving 
granular temperature (m/s) 
 
The CPU times of the simulations with different cell 
numbers per 10 seconds process time are listed below.  

Cell number CPU time [h] 

5200 46 

23000 74 

93000 488 

Table 3: CPU-times of simulations with different cell 
number (CPU: 3GHz Pentium) 

Actually, due to its complexity, the simulation with 93000 
cells was only calculated for 2 seconds on this computer. 
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It was simulated in parallel with 4 nodes (1.5 GHz per 
node) in a HP xc6000 cluster. It took 251 hours for 10s of 
process time. 
For the calculation of the droplet deposition we used the 
simplified approach that the granular temperature is not 
transported and can be calculated analytically. 
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Figure 8: Total deposition efficiency in the granulator 
(m=1000g) 
 
The deposition efficiencies for each simulation run 
oscillate a bit over time because of the unsteady 
calculation of the fluidized bed. Therefore, the deposition 
efficiencies should also be averaged (Appendix C). The 
deposition efficiencies of three different bed masses are 
listed in Table 4. 
 

Bed Mass 
[g] 

Diameter d30 
[μm] 

Deposition 
efficiency 

[%] 
600 363 53.6 
1000 430 74.2 
1400 481 86.3 

Table 4: Deposition efficiencies at different bed masses 

The relationship of the deposition efficiency and the bed 
mass can be fitted as a curve. This curve can be used to 
calculate the growth rate for the population balance. The 
population balance was solved with the QMOM method.  

300

350

400

450

500

550

600

0 10 20 30 40 50 60 70 80 90 100
time [min]

d3
0 

[ μ
m

]

simulation

experiment

 
Figure 9: Development of the particle diameter over time. 
 
Figure 9 shows the growth of the particle diameter over 
time. It can be seen that this method predicts the evolution 
of the particle diameter very well. Figure 10 shows the 
particle size distributions during the granulation, which 
were reconstructed from the moments with the method 
mentioned above. We assumed that the growth rate is not 
a function of particle size. Therefore, the shape of the PSD 
is preserved, whereas the measured PSD becomes lower 

and wider during the experiment. This means that the 
growth rate depends on the particle size. The large 
particles grow faster than the small ones. This is due to the 
relationship between particle size and residence time in 
the jet. The large particles stay in the jet flow for a longer 
time due to their inertia and therefore more droplets are 
deposited on them. 
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Figure 10: PSD (q3) simulation and experiments 

CONCLUSION AND OUTLOOKS 
The fluid dynamics in a fluidized bed spray granulator 
was simulated with the “Two Fluid Model”. The 
simulation results agree with the measured data with a 
deviation of less than 20%. The model is sensitive to the 
calculation of the granular temperature. When taking the 
transport equation of granular temperature into account, 
the particle velocity is slightly underestimated. The 
calculation with an analytical calculation of the granular 
temperature shows a good agreement with the experiment 
for the maximum particle velocity in the middle of the jet 
flow, but the jet flow was not as wide as the measured 
one. Including the model for the droplet deposition the 
evolution of the particle diameter can be well estimated. 
The calculated PSD preserves its shapes as a result of the 
assumption that the particle growth rate doesn’t depend on 
the particle size, while the experimental PSD becomes 
wider. This indicates the necessity to simulate the fluid 
dynamics of the polydisperse system in order to obtain the 
growth kinetics. A “DQMOM” like method could be used 
to obtain the dependency of growth rate on particle size. 
The fluid dynamics can be simulated in a fluidized bed 
with three or four solid phases. The diameter and volume 
fraction of each phase can be calculated with the product 
difference method from an initial PSD. Then the growth 
kinetics can be obtained by calculating the droplet 
deposition for a few seconds with CFD. Typically the 
dynamics of spray granulation process is slow. Therefore, 
it can be assumed that the fluid dynamics does not change 
a lot within a few minutes, so that the population balance 
can be solved with regular updates of the fluid dynamics 
in certain time intervals. This multiscale approach may be 
an efficient way for a simulation of the whole granulation 
process. 
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APPENDIX A 
Re Re < 1 1 - 30 30 - 50 50 - 90 Re > 90 

a 0.65 1.24 1.03 1.84 2 

b 3.7 1.95 2.07 0.506 0.25 

Table 5: constants for modelling the impingement 
efficiency 

APPENDIX B 

 
Figure 11: 2D grid pave mesh (cell number = 93000) 

 
Figure 12: 2D grid mapped mesh (cell number = 44000) 

APPENDIX C 
The simulated total deposition efficiencies for a bed mass 
of 600g and 1400g are shown below. 
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Figure 13: entire deposition efficiency in granulator 
(m=600g) 
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Figure 14: entire deposition efficiency in granulator 
(m=1400g) 
 


