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ABSTRACT 

Currently, the two-fluid model is one of the most practical 
and accurate macroscopic formulations for handling 
bubbly flow systems. Nevertheless, in order to rigorously 
account for bubble-bubble interactions (e.g. coalescence 
and breakage), the population balance equation (PBE) 
must be solved along with the continuity and momentum 
balance equations. Recently, the MUltiple SIze Group 
(MUSIG) model appears to be one of the most common 
and direct methods to solve the PBE with a finite series of 
discrete classes. Nonetheless, a large number of classes 
must be used posing severe limitations on the 
computational resources for complex bubbly flows. An 
attractive alternative is represented by the direct 
quadrature method of moments (DQMOM) (Marchisio 
and Fox, 2005) where the particle size distribution (PSD) 
is tracked through its moments by integrating out the 
internal coordinate. The main advantage of DQMOM is 
that the number of scalars to be solved is very small (i.e. 
usually 4-6). The objectives of this present study are: (1) 
to implement the DQMOM model to accommodate 
coalescence and breakage of bubbles, and (2) to validate 
the model against measurements of bubbly flows by Hibiki 
et al. (2001) for a range of flow conditions. Preliminary 
computed results compared very well against the 
experimental data. 

NOMENCLATURE 

aif interfacial area concentration 
a coalescence rate 
b breakage rate 
Bc, Bb birth rate due to coalescence and break-up 
Dc, Db death rate due to coalescence and break-up 
f bubble size distribution function 
Fi total interfacial force 
g gravitational acceleration 
j superficial velocity 
M mass scale of gas phase (bubble) 
N number density of gas phase (bubble) 
P pressure 
p number of fragments/daughter bubbles 

t physical time 
u velocity 
We Weber number 
Greek symbol  
α void fraction 
δ Dirac’s delta function 
ε turbulence kinetic energy dissipation 
µe
 effective viscosity  

ξ internal space vector of the PBE 

ρ density 

σ surface tension 
ψ weighted abscissas 
Subscripts 
g gas 
i Index of abscissas or gas/liquid phase  
l Liquid 
min Minimum operator 
max Maximum operator 

INTRODUCTION 

Two-phase flows are prevalent in many technological 
systems. In chemical industries, bubble column reactors 
are extensively used for handling processes that require 
large interfacial area and efficient mixing processes. 
Engineering systems such as heat exchangers widely 
employ two-phase flow mixture of gas and liquid for 
efficient removal of heat generation. In the nuclear area, 
the capability to predict void fraction profile and other 
two-phase flow parameters in subcooled boiling flows is 
of considerable importance to ensure the safe operation of 
the reactor. 
In the present state-of-the-art, two-fluid model can be 
considered as one of the most practical and accurate 
macroscopic formulations to model the thermal-
hydrodynamics of two-phase flow systems. Within the 
field equations, which are expressed by the conservation 
of mass, momentum and energy for each phase, interfacial 
transfer terms appear in each of the equations. These terms 
require essential closure relations and should be modelled 
accurately. Interfacial transfer terms in the two-fluid 
model are strongly related to the local transfer mechanisms 
such as the degree of turbulence near the interfaces and 
the interfacial area concentration. Theoretically speaking, 
the interfacial area concentration (aif) is a geometrical 
parameter of the local interfacial structure which describes 
the available area for the interfacial mass, momentum and 
energy transport. All the above interfacial transport 
mechanisms between phases are proportional the local 
interfacial area concentration. However, the closure 
relations for the interfacial transfer terms remain far from 
resolution and they still represent the weakest link in the 
two-fluid model. 
Since the interfacial area concentration represents the key 
parameter that links the interaction of the phases, much 
attention have been concentrated towards better 
understanding the coalescence and breakage effects due to 
interactions among bubbles and between bubbles and 
turbulent eddies for gas-liquid bubbly flows. The primary 
objective is to better describe the temporal and spatial 
evolution of the two-phase geometrical structure. 
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Population balance approaches (Cheung et al., 2008, 
Wang et al., 2005, Chen et al., 2004) and volumetric 
interfacial area transport equation (Hibiki and Ishii, 2000, 
Yao and Morel, 2004, Sun et al., 2004, Wu et al., 1998) 
have been proposed to predict the interfacial area 
concentration. 
Benefitting from the early introduction to commercial 
package (Lo, 1996), the population balance approach 
based on the MUSIG model has been frequently employed 
to predict the non-uniform bubble size distribution in a 
gas-liquid mixture by solving a range of bubble classes. 
Although encouraging results have been reported (Chen et 
al., 2004, Cheung et al., 2007b), in case of wide range of 
bubble sizes in a complex two-phase flow system were 
being considered, a substantial number of equations might 
be required to adequately track the range of bubble sizes. 
For flows where large bubbles could exist, especially in 
large diameter pipe, computational resource for solving 
such large number of transport equations could be 
extremely excessive. This model drawback is 
fundamentally caused by the fact that it adopts class 
method to discretize the bubble size distribution where the 
pivot size or abscissa of each class is fixed. In practical 
calculations where the number of bubble classes is limited, 
bubble size distribution cannot be adequately represented.  
In this paper, an alternative approach to predict gas-liquid 
bubbly flows is presented by the consideration of Method 
of Moments (MOM). Here, the bubble size distribution is 
tracked through its moments by integrating out the internal 
coordinates. The main advantage of MOM is its numerical 
economy that condenses the problem substantially by only 
tracking the evolution of a small number of moments (i.e. 
usually 4-6). As aforementioned, this becomes rather 
critical in modeling complex flow problems when the 
bubble dynamics is strongly coupled with already time-
consuming calculations of turbulence multiphase flows. 
However, due to the difficulties related with expressing 
transport equations in terms of the moments themselves, 
the Direct Quadrature Method of Moments (DQMOM) is 
applied instead which essentially involves the direct 
solution of the transport equations for weights and 
abscissas of the quadrature approximation. As will become 
clearer later, each node of the quadrature approximation 
can be treated as a distinct gas phase. DQMOM, similar to 
MUSIG, thus offers a powerful approach for describing 
polydisperse bubbly flows undergoing coalescence and 
breakage processes in the context of Computational Fluid 
Dynamics simulations. 

MODEL DESCRIPTION 

Two-fluid model for gas-liquid flow  

The three-dimensional two-fluid model solves the 
ensemble-averaged of mass and momentum transport 
equations governing each phase. These equations can be 
written as: 
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where g
v

is the gravity acceleration vector and P is the 

pressure. From the above equation, it is noted that closure 

law is required to determine the momentum transfer of the 
total interfacial force. This force strongly governs the 
distribution of the liquid and gas phases within the flow 
volume. On the L.H.S of equation (2), Fi represents the 
total interfacial force which is composed of the drag force, 
lift force, wall lubrication force and the turbulent 
dispersion force respectively. Numerical details on 
handling these interfacial forces can be found in Cheung et 
al. (2007a) and references therein. For handling the 
turbulence effects, the Shear Stress Transport (SST) model 
is adopted for the liquid phase (Menter, 1994), while the 
Sato’s bubble-induced turbulent viscosity model (Sato et 
al., 1981) was employed for the gas phase. 

Direct quadrature method of moments 

For the PBE, an integrodifferential form describing the 
local Bubble Size Distribution (BSD) can be written as: 
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where ),( tf ξ is the function of bubble size distribution 

dependent on the internal space vectorξ , whose 

components could be characteristics dimensions, surface 
area, volume and so on. t is the external variables 
representing the physical time in external coordinate 

respectively. ),( tu ξ is velocity vector in external space.  

The R.H.S of equation (3) is the net source or sink term   
of the PBE which denotes the birth and death rates of 
bubbles due to coalescence and breakage processes 
defined by: 

∫

∫

∫

∞

∞

′′′′+

′′′′−−

′′′−′′−=

ξ

ξ

ξξξξξγ

ξξξξξξ

ξξξξξξξξ

dstfpb

dtfatf

dtftfatS

),()/()()(

),(),(),(

),(),(),(
2

1
),(

0

0

      

),()( tfb ξξ−                                             (4) 

 
Here, the first and second terms denote birth and death 

rate of bubble of space vectorξ due to coalescence 

processes; the third and fourth terms account for the birth 
and death rate caused by the breakage processes 

respectively. ),( ξξ ′a is the coalescence rate between 

bubbles of sizeξ andξ ′ . Conversely, )(ξb is the 

breakage rate of bubbles of sizeξ . )(ξγ ′  is the number 

of fragments/daughter bubbles generated from the 

breakage of a bubble of sizeξ ′ and )/( ξξ ′p represents 

the probability density function for a bubble of sizeξ to 

be generated by breakage of a bubble of sizeξ ′ . 

Like all method of moment approaches, the basic idea of 
DQMOM founded upon a transforming the problem into 
lower-order moments of the size distribution where the 
integral of the BSD function is approximated by a finite 
set of Dirac’s delta functions (McGraw, 1997). Taking the 
bubble mass, M, as the internal coordinate, the BSD can 
then be expressed as: 
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where Nk represents the number density or weight of the 
ith class and consists of all bubbles per unit volume with a 
pivot size or abscissa Mk. Obviously, the quadrature 
method is brought down to solving 2N unknowns, Nk and 
Mk. A number of approaches in the specific evaluation of 
the quadrature abscissas and weights have been proposed. 
With the aim to solve multi-dimensional problems, 
Marchisio and Fox (2005) extended the method by 
developing the DQMOM where the quadrature abscissas 
and weights are formulated as transport equations. The 
main idea of the method is to keep track of the primitive 
variables appearing in the quadrature approximation, 
instead of moments of the BSD. As a result, the evaluation 
of the abscissas and weights are obtained using matrix 
operations. More details of the method can be found in 
above reference. 
In the present study, in order to be consistent with the 
variables used in the two-fluid model, the weights and 
abscissas can be related to the size fraction of the 
dispersed phase (fk) and a variable defined as 

kkk Mf /=ψ . As a preliminary study, bubbles are 

assumed to travel with the gas velocity, the size fraction of 

kf  is related to the weights and abscissas by: 

kiikgg MNf ζαρ ==                      (6) 

Using the above expression, the transport equations 
become: 
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The moment transform of the coalescence and break-up of 
the term Sk can then be expressed as: 
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where the terms B and D represent the birth and death 
rates of the coalescence and break-up of bubbles which is 

equivalent to ),( tS ξ in equation (4). On the basis of the 

approximation given in equation (6), the birth and death 
rates can be written as: 
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Based on equation (10-13), through a series of matrix 
operations, the source terms ai and bi can then be 
determined and the weights Ni and Mi can be also 
evaluated according to its definition in terms of if and 

iψ . As a preliminary generic study, the birth and death 

rates are evaluated according to the widely-adopted 
coalescence kernel by Prince and Blanch (1990) and the 
break-up mechanism of Luo and Svendsen (1996). 

EXPERIMENTAL DETAILS 

The two-phase flow experiment conducted by Hibiki et al. 
(2001) has been performed at the Thermal-Hydraulics and 
Reactor Safety Laboratory in Purdue University. The test 
section was a round tube made of acrylic with an inner 
diameter (D) of 50.8 mm and a length (L) of 3061 mm. 
The temperature of the apparatus was kept at a constant 
temperature (20oC) within the deviation of ±0.2oC by a 
heat exchanger installed in a water reservoir. Local flow 
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Figure 3: Local predicted and measured interfacial 
area concentration profiles at z/D = 6.0 and 53.5 for 
both flow conditions 

<jf>=0.491 m/s 
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z/D=53.5 
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z/D = 53.5 
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Test Channel Inlet with 
Bubble Injected 

 

Figure 1: Schematic diagram of experimental 
arrangement 
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measurements using the double sensor and hotfilm 
anemometer probes were performed at three axial (height) 
locations of z/D = 6.0, 30.3 and 53.5 and 15 radial 
locations of r/R = 0 to 0.95. The schematic diagram of the 
experimental arrangement is shown in Figure 1. A range 
of superficial liquid velocities jl and superficial gas 
velocities jg have been performed, which covered mostly 
the bubbly flow region, including finely dispersed bubbly 
flow and bubbly-to-slug transition flow regions. Area 
averaged superficial gas velocity <jg> was obtained from 
local void fraction and gas velocity measured by the 
double sensor probe, whereas area averaged superficial 
liquid velocity <jl> was obtained from local void fraction 
measured by the double sensor probe and local liquid 
velocity measured by the hotfilm anemometry. More 
details regarding the experimental set-up can be found in 
Hibiki et al. (2001). In this paper, numerical predictions 
have been compared against local measurements at two 
flow conditions: Case 1 with <jl>=0.491 m/s and 
<jg>=0.0556 m/s; Case 2 <jl>=0.986 m/s and <jg>=0.113 
m/s. The inlet void fractions are 5% and 10% respectively. 
The bubble size from the air injection is 2.5 mm for both 
cases. 

NUMERICAL DETAILS 

For the two-fluid model, two sets of equations governing 
the conservation of mass and momentum were solved via 
the ANSYS Inc, CFX-11 computer code. For DQMOM, 
two sets of transport equations governing four weights and 
four abscissas were chosen to predict the bubble size 
distribution of which the evaluation of the source terms ai 

and bi in equations (7) and (8) were determined through 
matrix operations carried out by an in-house external 
subroutine. Both breakage and coalescence calibration 
factors, FB and FC, were adjusted to 0.15 and 0.05 
respectively. Comparing with our previous study (Cheung 

et al., 2007b), FB and FC were specified to 1.0 and 0.05 in 
the MUSIG model based on experimental calibrations. 
Such discrepancy of calibration factor between both 
approaches could be attributed to the additional flexibility 
of the DQMOM. As both weights and abscissas are 
variables within the DQMOM, calculation of bubble size 
distribution could be very sensitivity to strength of 
coalescence and breakage sources. As a result, a different 
set of calibration factor are adopted in this study. Radial 
symmetry was assumed, so that the numerical simulations 
were performed on a 60o radial sector of the pipe with 
symmetry boundary conditions at both sides. Inlet 
conditions were assumed to be homogeneous in regards to 
the superficial liquid and gas velocities, void fractions for 
both phases and uniformly distributed bubble size in 
accordance with the flow conditions described above. At 
the pipe outlet, a relative average static pressure of zero 
was specified. A three-dimensional mesh containing 
hexahedral elements was generated resulting in a total of 
12,000 elements (i.e. 20 radial, 20 circumferential and 40 
axial) covering the entire pipe domain. Reliable 
convergence was achieved within 600 iterations for a 
satisfied convergence criterion based on the RMS (Root 
Mean Square) residuals of 1.0 × 10-4 and for a physical 
time scale of the fully implicit solution of 0.008 s.  

RESULTS AND DISCUSSION 

Local radial profiles of the void fraction, interfacial area, 
Sauter mean diameter, gas and liquid velocities at two 
measuring axial locations of z/D = 6.0 and 53.5 were 
predicted through the two-fluid model and DQMOM. The 
computed results are compared against the measured data 
of Hibiki et al. (2001). In order to assess its predictive 
capability, additional comparison is also carried out 
against the predicted MUSIG results obtained through our 
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Figure 2: Local predicted and measured void fraction 
profiles at z/D = 6.0 and 53.5 for both flow conditions 
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Figure 4: Local predicted and measured sauter mean 
bubble diameter distributions at z/D = 6.0 and 53.5 
for both flow conditions 
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previous work in Cheung et al. (2007b).  
Figure 2 shows the void fraction distributions of both flow 
conditions at the two axial locations for the measured data 
and computer results of the DQMOM and MUSIG. In 
isothermal gas-liquid bubbly flows, Serizawa and Kataoka 
(1990) classified the phase distribution patterns into four 

basic types of distributions: wall peak, intermediate peak, 
core peak and transition. The void fraction peaking near 
the pipe wall represented the flow phase distributions 
caused by the typical wall peak behaviour. In both flow 
condition, it was observed that the wall peaking profile 
started to develop at the axial locations of z/D = 6.0 (near 
the inlet) and become well established at z/D = 53.5 (near 
the exit). Model predictions of both MUSIG and 
DQMOM captured the radial void fraction distributions 
considerably well at the two locations. Nevertheless, it 
appeared that DQMOM gave slightly better predictions 
especially at the well-developed wall peaking 
characteristic at z/D = 53.5 in both test cases. 
Figure 3 illustrates the Interfacial Area Concentration 
(IAC) distributions of both flow conditions at the 
respective two axial locations for the measurements and 
the two model predictions. The measured data followed 
the similar profile as the void fraction distribution as 
stipulated in Figure 2. Here again, predictions from both 
MUSIG and DQMOM models were in well agreement 
with measurements. This further ascertains the 
predictability of the DQMOM in comparison with MUSIG 
model. The Sauter mean bubble diameter distributions are 
exemplified in Figure 4. At z/D = 53, good agreement was 
achieved for DQMOM near the pipe center while MUSIG 
under-predicted the bubble sizes there. For the flow 
condition of <jl>=0.491 m/s and <jg>=0.0556 m/s, 
DQMOM marginally over-predicted the bubble sizes but 
followed similar trend with the experimental distribution. 
Figure 5 and 6 show the local radial gas and liquid 
velocity distribution at the two axial locations. The 
introduction of bubbles into the liquid flow had the 
tendency to flatten the liquid velocity profiles with a 
relatively steep decrease close to the pipe wall. The same 
behaviour was also observed for the gas velocity profiles. 
Overall, both model predictions of the gas and liquid 
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Figure 6: Local predicted and measured liquid 
velocity profiles at z/D = 6.0 and 53.5 for both flow 
conditions 
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Figure 7: Cross-section averaged bubble size 
distribution at the axial locations of z/D = 6 and z/D 
= 53.5 
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Figure 5: Local predicted and measured gas velocity 
profiles at z/D = 6.0 and 53.5 for both flow conditions 
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velocities were in satisfactory agreement with 
measurements. 
The cross-section averaged bubble size distributions near 
the pipe inlet and near the pipe outlet of the test case 
<jl>=0.986 m/s and <jg>=0.113 m/s are shown in Figure 7. 
This figure provided some insight on how the abscissas 
and weights being evolved in the DQMOM. As can be 
seen in the two figures, the dominant bubble size was 
around 2.5mm near the pipe inlet. Through evolution of 
abscissas and weights in DQMOM, the domain bubble 
size increased to 2.75mm and the weights of larger 
bubbles were also increased.  

CONCLUSION 

A two-fluid model coupled with a population balance 
model is presented in this paper to handle isothermal gas-
liquid bubbly flows. The DQMOM was implemented in 
the CFD code ANSYS Inc., CFX-11 to determine the 
temporal and spatial geometrical changes of the gas 
bubbles. Computed results by the DQMOM two-fluid 
model were assessed against experiments performed at 
Purdue University as well as the computed results from 
the MUSIG two-fluid model. Reasonably good agreements 
for the void fraction, interfacial area concentration, bubble 
Sauter mean diameter and gas and liquid velocities have 
been achieved. 
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