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ABSTRACT 
Models of solidification need to account for multiple 
physical processes that occur at multiple length scales. A 
general solidification modelling framework is outlined 
which can be used to systematically handle the multi-
scale/multi-physics nature of a given process. This 
framework is illustrated by considering specific models, a 
model of a alloy casting, and a model of dendrite growth 
in an under cooled melt. The paper concludes by 
quantifying the computer requirements for an integrated 
solidification model that would span across the length 
scales of interest.   

NOMENCLATURE 
g solid fraction 
H dimensionless enthalpy 
T  temperature 
 
ε anisotropic strength 
κ curvature 
θ interface angle 
 

INTRODUCTION 
Solidification of metal alloys is a multi-scale/multi-
physics process. A complete model of a given system 
could involve phenomena at the process scale (~m), e.g., 
the fluid flow in a continuous caster, closely coupled with 
phenomena occurring at length scales associated with the 
solid liquid interface, e.g., a mass diffusion (micro-
segregation) in a secondary dendrite arm space (~10 μm). 
The objective of this paper is to outline a general frame- 
work that can be used to develop multi-scale/multi-
physics models of solidification systems. The essential 
feature in the framework is the identification of three 
distinct length scales; the Process Scale that defines the 
domain of the problem, the Grid Scale where nodal values 
of process variables are defined and stored, and the Sub-
grid Scale where phenomena at scales below the grid 
resolution are incorporated into the analysis via the use of 
volume averaging and the development of constitutive 
relationships. The operation of this framework is 
illustrated by considering two solidification models. The 
first is a heat and mass transfer model of the solidification 
of an alloy. This model is aimed at tracking the fate and 
transport of the solute components (segregation) in a 
casting. The second model looks at the evolution of 
microstructure, in particular an equi-axed crystal growing 
in an undercooled melt. Together, these models span nine 

decades of length scales. The paper concludes by 
investigating the possibility of combining these models 
into a single integrated solidification model. The focus in 
this investigation is a quantification of the computational 
requirement.   
 

 
Figure 1: A general modelling framework for multi-
scale/multi-physics processes.  

A MULTI-SCALE/MULTI-PHYSICS FRAMEWORK 
In very broad terms the multi-scale/multi-physics features 
in a solidification system focus on the treatment of the 
interfaces (transitions) between phases and/or phenomena; 
features that often operate at a local scale which is 
significant smaller than the process scale of industrial 
interest. Hence, a successful model has to be able to 
account for the influence of process scale on the local 
scale and visa-versa. In this light, a numerical modelling 
framework can be envisaged that is build on three distinct 
length scales, see Figure 1. The Process Scale defines the 
domain of the problem. At this scale the domain of 
interest is covered by an appropriate grid of elements 
defined by a discrete set of node points. On this grid, 
algebraic equations are developed that relate values of the 
independent variables stored at a given node to values at 
neighbouring nodes and the domain boundaries. The Grid 
Scale is defined by a specified volume associated with a 
node point. The conditions in the grid-scale volume are 
accounted for by the nodal value of the independent 
variable which, at this scale, is regarded as a 
representative or averaged value. The averaging process 
used to define the nodal values is informed by the Sub-
grid Scale and in this process account is made of the 
phenomena that occur at, across, or adjacent to phase 
interfaces and transitions. In addition to the independent 
variables, through homogenization and volume averaging, 
the sub-grid scale can also be used to arrive at grid scale 
representative values for process parameters and 
coefficients. This simple mined framework may not work 
exactly in every case but, as illustrated by two specific 
examples below, it does provide a useful framework for 
building models that can span a wide range of length 
scales. 
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COUPLED HEAT AND MASS TRANSFER MODEL 
The first specific example of multi-scale/multi-physics 
model is a coupled model of the heat and mass transfer 
during solidification of an alloy, see Figure 2. 

 
 
Figure 2: A coupled model of the heat and mass transfer 
during solidification of an alloy. 
 
The process scale is a casting, a static ingot casting is 
shown in the Figure but the model developed can be 
readily extended to continuous or DC casting geometries.  
The objective is to track the evolution the solid fraction, 
thermal, and solute fields. This is achieved by solving the 
heat and mass transport equations for nodal values of 
temperature and solute concentration. This solution needs 
to be consistent with the thermodynamics that couple the 
solute concentrations and temperature and take account of 
advective transport of the liquid melt and solid grains in 
the casting. When averaging over the nodal volume at the 
grid scale (the REV), the local morphology of the solid 
phases is account for in the construction of sub-grid 
models. Two examples are (i) a model that couples the 
thermal and solute fields through tracking the segregation 
and diffusive transport of the solute components at the 
solid liquid interface and (ii) a model leading to a 
constitutive relationship for the momentum exchange 
between the solid phases and the liquid melt. Full 
descriptions of this type of modelling can be found in the 
work of Bennon and Incropera (1987), Beckermann and 
Viskanta (1989), Voller et al. (1989), Beckermann  and 
Wang (1995), and Swaminathan and Voller (1997). To 
provide a little more detail consider the recent work by 
Voller et al (2004) and Voller (2006a). These authors 
advocate a mixed explicit/implicit time stepping 
technique. In a time step the conserved quantities of 
mixture enthalpy and mixture solute within each REV are 
directly obtained from an explicit time integration of the 
heat and mass transfer equations. To move to the next 
time step, nodal values for solid fraction, temperature and, 
solute concentrations need to be extracted from these 
quantities. Appropriate values are obtained by enforcing 
consistency between the mass balance in a representative 
length scale of the solid-liquid morphology and the 
liquidus surface of the phase diagram. In seeking this 
consistency, the calculated variables are constrained to 
maintain the current nodal values of the mixture enthalpy 
and solute concentrations. Following this step, with a solid 
fraction now in hand, appropriate sub-grid interphase drag 
terms can be calculated and the two-phase momentum 
equations solved for the liquid and solid velocities; 
standard modifications of the implicit SIMPLE algorithm 
can be used. Voller et al (2004) and Voller (2006a) have 
verified this explicit /implicit approach by comparing with 
available semi-analytical solutions and an experimentally 

validation for an inverse segregation has been reported by 
Ferreira et al (2004). 

MICROSTRUCTURE MODEL  
The heat and mass transfer model presented in the 
previous section requires sub-grid models that account for 
morphology. As the model stands a simple morphological 
model based on a representative length scale is used. 
While such an approach works well for considerations 
connected to the interface scale redistribution of the solute 
components (microsegregation) it might be inadequate to 
account for interphase drag terms. In addition, a correct 
averaging of a grid scale coefficients such as a mass or 
thermal diffusivities could require a more complete 
description of the microstructure in the REV. The way to 
go in this case, is to develop a model of the microstructure 
development. A good starting point is a model of a single 
equi-axed grain in an undercooled melt. The process scale, 
see Figure 3, is a box of initially undercooled liquid 
slightly larger than the final grain size.  
 

 
Figure 3: A model of crystal growth in an undercooled 
melt/ 
 
Examples of sub-grid models are constitutive models that 
accounts for surface anisotropy and, if a phase field model 
is used, the interpolations of thermal properties and the 
phase field marker across the diffuse interface (Karma and 
Rappel, 1998).  The development of models of this system 
has been a real growth industry in the solidification 
modelling community and many sophisticated approaches 
based on level-set techniques (Chen et al., 1997, and, Kim 
et al., 2000) and phase field formulations have been 
developed (Boettinger et al., 2002). As pioneered by 
Tacke (1990) and Tacke and Harnisch (1991) and 
followed up more recently by Voller and Murfield (2005), 
Pal et al. (2006), Chatterjee and Chakraborty (2006) and 
Voller (2006b), a reasonable model, however, can also be 
obtained with a modest enthalpy formulation. In this 
approach, as detailed by Voller and Murfield (2005) and 
Voller (2005b) the enthalpy equation 
 

T
t

H 2∇=
∂
∂                                 (1) 

 
is solved explicitly, where assuming an appropriate 
scaling, the dimensionless enthalpy is defined as 
 

    )g(TH −+= 1                               (2)          
 

the sum of the temperature and liquid fraction. An explicit 
solution of (1) will provide a value of H at each node 
point in the domain. A point wise procedure can then be 
used to extract a temperature and liquid fraction to be used 
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at the next time step of the calculation. This extraction has 
to be carried out so that it is consistent with sub-grid 
models that provide relationships for the curvature under-
cooling (Gibbs–Thomson condition). For example, in a 
pure material, following the definitions in Kim et al 
(2000),  at a phase change node  the temperature 
is given by 

10 << g

 
)cos(T θε−κ−= 4151                          (3) 
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can, on appropriate discretizations,  be calculated from the 
nodal solid-fractions; the parameter ~ 0.05 is the 
anisotropic strength.  Hence, the procedure for extracting 
temperature T and liquid fraction (1 - g) from enthalpy H 
reduces to the solution of the non-linear equations (2)-(4) 
at each phase change node; readily achieved through 
iteration. This surprisingly simple model can lead to 
solutions of dendrite crystals that (i) are consistent with 
other models, panel A in Figure 4  shows a time shot 
prediction of a four fold symmetry dendrite, (ii) have the 
correct long time behaviour for the tip velocity (see panel 
B), (iii) are relatively free of grid anisotropy, panel C 
compares  predictions made with the axis of symmetry at 
0

ε

o and 45o, and (iv) can be extended to predict multiple 
grains growing at various angles of preferred growth (see 
panel D). The last result is a worthwhile one since it 
provides a framework for calculating averaged 
(homogenized) quantities of mass and thermal diffusivities 
that are based on realistic solid-liquid morphologies 
(DasGupta et al., 2006).    

 
Figure 4: Simulation results for dendritic growth with 
four fold symmetry into an undercooled melt. Conditions 
match those of Kim et al (2000).  

HOW WIDE A SCALE RANGE? 
The development of the microstructure model was 
motivated by the need to accurately characterize the solid-
liquid morphology in the grid volumes of the heat and 
mass transfer model. Now that it has been established that 
it is possible to develop microstructure models, can we 
close the loop and build a heat and mass transfer model 
based on a seamless simulation from the process down to 
the smallest microstructural length scale. In other words, 
can we have a solidification model of heat and mass 
transfer at the industrial  process scale (~m) that resolves 
down the interface capillary scale (~nm);  a simulation (in 
2D ) that will require 1018 node points. Is this feasible?  
Recently, Voller and Porté-Agel (2002) undertook a study 
where the time evolution of grid sizes used by researchers 
attending the conference series “Modeling of Casting, 
Welding and Advanced Solidification Processes” were 
quantified.  Figure 5 presents an update of the results 
through 2006. The plot provides the three largest grid 
sizes (number of nodes) from each of the eleven 
proceedings of this conference. Not surprisingly, this 
result shows a scaling consistent with the popular form of 
Moore’s law; the grid size doubles every 18 months. In 
this way, it is seen that a grid of 1018 will not be feasible 
until the year 2055.     

Figure 5: Time evolution of grid size (number of nodes) 
used in solidification simulations. 

CONCLUSION 
Models of heat and mass transfer in solidification systems 
are now well established. The concept of a modelling 
framework based on the three length scales of process, 
grid, and sub-grid allows for a comprehensive treatment 
that accounts for all the relevant scales. The weakest point 
in this model is the need to assume something about the 
nature of the morphology in the grid volume. This 
problem could be overcome by the application of direct 
modelling of the microstructure within a heat and mass 
transfer model. Indeed tools are in place where 
microstructure models can be built from sub-grid models 
that operate on the nano-meter scale. Unfortunately, 
however, a projection of future computer power indicates 
that it may be some time before models with the require 
range of scales can be attempted. In the mean time 
researches should focus on developing the heat and mass 
transfer models of solidification with emphasis on 

3  



 
 

modelling the general two-phase nature of the 
solidification morphology.  At the same time they should 
look toward “value added” models of microstructure that 
will be able to indirectly inform the heat mass transfer 
models in the absence of being able to contribute directly.    
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