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ABSTRACT 
The motion and deformation of mammalian red blood 
cells (RBCs) in microvessels are simulated using a two-
dimensional computational model.  Each RBC is rep-
resented as a set of interconnected viscoelastic elements 
suspended in a viscous fluid.  The equations of 
equilibrium of this structure are solved simultaneously 
with the equations of fluid motion using a finite-element 
method.  Computed cell shapes ane trajectories are 
compared with corresponding experimental observations 
and good agreement is shown.  The method is used to 
predict the motion of multiple interacting RBCs flowing 
along narrow tubes. 

INTRODUCTION 
Human blood contains 40-45% by volume of red blood 
cells (RBCs), which exert a strong influence on the flow 
properties of blood.  Mechanically, a RBC may be 
considered as a highly flexible membrane containing an 
incompressible viscous fluid.  In the microcirculation, the 
cells dimensions (~8 μm undeformed diameter) is 
comparable to microvessel dimensions (4-100 μm). 
Several theoretical approaches have been developed to 
describe motion of RBCs in microvessels.  Quantitative 
theoretical models have been developed that successfully 
predict flow resistance when RBCs flow in single file in 
narrow capillary-sized tubes (Secomb et al. 1986).  In 
tubes with diameter about 30 μm or more, flow resistance 
can be predicted using a two-phase continuum model, in 
which a central core region with uniform viscosity is 
surrounded by a cell-free layer having an empirically 
determined width of 1.8 μm (Secomb 1995; Secomb 
2003).  However, no quantitative theory is available to 
predict the width of the cell-free layer from first principles 
based on the mechanical properties of RBCs.    
Simulation of the motion of multiple interacting flexible 
particles in three dimensions is a difficult computational 
problem.  In the present study, a two-dimensional model is 
therefore used.  However, the mechanical properties of the 
particles representing RBCs are chosen to simulate key 
aspects of their three-dimensional mechanics. 

MODEL DESCRIPTION 
The two-dimensional representation of RBC mechanics is 
shown in Figure 1A.   The membrane lying in a cross-
section through a three-dimensional cell is a represented 
as a chain of straight elements, hinged at the nodal points.  
Each element consists of an elastic component in parallel 

with a viscous component, representing the viscoelastic 
properties of the membrane.  An elastic resistance to 
bending is introduced at the nodes, to represent membrane 
bending elasticity. 
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Figure 1.   A.  Two-dimensional model for RBC.  
Rectangles represent viscoelastic elements.  B, C. Re-
lationship between internal viscous elements and mem-
brane deformation in tank-treading.  Bands of membrane 
(a,b) alternately shorten and elongate during tank-
treading. 
When placed in simple shear flow of high-viscosity fluid, 
RBCs exhibit stable orientations and cyclic ‘tank-
treading’ motion of the membrane around the cell interior.  
In this motion, a band of membrane around the cell is 
alternately lengthened and shortened (Figure 1B).  This 
continuous deformation results in viscous energy 
dissipation in the membrane.  Internal viscous elements 
connecting each nodal point to a single central point 
within the model cell are included to represent resistance 
to this motion.  
The fluid flow around the model cell results in loadings on 
the external elements.  The longitudinal (tension) force 
ti(s), the transverse (shear) force qi(s) and the bending 
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moment mi(s) acting in external element i are 
consequently functions of distance s along the element 
from node i to node i+1, where 0 ≤ s ≤ li and li is the 
length of the element, and where 1 ≤ i ≤ n and n is the 
number of external nodes and elements.  The equations of 
mechanical equilibrium for an element are 
 
 dti/ds = – gi   (1) 
 dqi/ds = – fi   (2) 
 dmi/ds = qi   (3) 
where fi(s) and gi(s) are the normal and tangential 
components of the fluid loading.  The viscoelastic 
behaviour of the external segments is represented by 
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where it  is the mean tension in external element i, l0 is the 
reference length of the element, kt is the elastic modulus 
and μm is the viscosity.  The bending moments acting on 
element i at nodes i and i +1 are given by 
 mi(0) = – kbαi/l0  
 mi(li) =  – kbαi+1/l0   (5) 
where kb is the bending modulus and αi = θi – θi-1 is the 
angle between elements i – 1 and i.   Integrating equation 
(3) gives 
 iq  = kb (αi – αi+1)/(l0 li) .  (6) 

where iq  is the mean transverse force in external element 
i. From these equations, the tensions and transverse forces 
at the end points of each element can be obtained.  The 
internal elements are assumed to be viscous: 
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where Li is the length of internal element i and μ′m is its 
viscosity.  For any given configuration of the cell, the 
conditions for overall equilibrium of forces acting at the 
external nodes and the central node can then be expressed 
as a linear system involving the fluid loads fi(s) and gi(s) 
on each external segment and the velocities of the nodes. 
RBCs deform at effectively constant volume.  This 
property is represented by assigning an internal pressure 
that depends on the cell area A: 
 pint = kp(1 – A/Aref)   (8) 
where Aref and kp are constants.  A large value of kp is used 
(e.g., 50), so that the cell strongly resists area changes and 
the area remains close to the reference value Aref. 
The suspending medium is a viscous incompressible fluid, 
and the components of stress in the fluid are 
 σxx = 2μ ∂u/∂x – p, 
 σxy = μ (∂v/∂x + ∂u/∂y)  
 σyy = 2μ ∂v/∂y – p    (9) 
where p(x,y) and (u(x,y), v(x,y)) are the pressure and 
velocity fields.  Inertia is negligible, and conservation of 
momentum implies that 
 ∂σxx/∂x + ∂σxy/∂y = 0 
 ∂σxy/∂x + ∂σxy/∂y = 0.  (10) 

The divergence of the flow is e = ∂u/∂x + ∂v/∂y, where e = 
0 in an incompressible fluid.  The velocity at each point 
on an external element is obtained by linear interpolation 
between the nodal velocities at its ends and must match 
the local fluid velocity according to the no-slip condition.   
A finite element package (FlexPDE version 3.11, PDE 
Solutions Inc., Antioch, CA) was used to solve the 
resulting system of coupled equations.  The incomp-
ressibility condition e = 0 cannot be specified as one of 
the governing equations because of the structure of 
FlexPDE.  The condition e = 0 can be satisfied 
approximately by setting ∇2p = Ke where K is a large 
constant (e.g., 100), and monitoring values of e.  The 
components (ui, vi) of velocity at node i and at the central 
node were introduced into the finite element formulation 
as scalar variables.  RBC shapes were generally 
represented using 20 nodes, and 100-400 fluid elements 
were typically used.  When a cell closely approaches the 
domain boundary or another cell, the mesh generator 
controls the aspect ratio of the elements, so that a large 
number of small elements are used, allowing resolution of 
steep pressure and velocity gradients. 
Time-dependent cell shapes were computed using an 
explicit (Euler) scheme, with a time step of 1 ms or less.  
Smaller time steps were used for calculations of cell 
motions in shear flow at high shear rates and viscosities.  
Each time step required approximately 100s on a personal 
computer with a 2 GHz processor.  The initial shape was 
assumed to be circular with area Aref, so as not to bias the 
subsequent evolution of cell shape.  As the motion 
proceeds, the external segments elongate from initially 
compressed states, allowing non-circular shapes with the 
same area. 
Scaled values of variables were used.  All distances were 
expressed in μm, times in ms and forces in units of 10-7 
dyn.  The corresponding unit of viscosity is then 1 cP, 
close to the viscosity of normal blood plasma.  The 
dimensionless elastic constants of the membrane are then 
0.18 for bending modulus, 6 for shear modulus, and 5 × 
105 for bulk modulus.  From these values, it is evident that 
elastic bending resistance is generally a small effect, shear 
resistance is significant and resistance to area change is 
very high.  The scaled shear viscosity of the membrane is 
1000.  Therefore, the cell has a large viscous resistance to 
deformation on the millisecond timescale.  In the two-
dimensional model, values of these parameters and the 
viscosity of the internal elements were adjusted to provide 
a close fit to experimentally observed behaviour of RBCs 
tank-treading in high-viscosity media, including variation 
of cell length and tank-treading frequency with shear rate.  
Further simulations were then performed using channel 
geometries representative of red cell motion in micro-
vessels, including effects of asymmetric cell position.  

RESULTS 
Predictions for a single cell flowing along an 8-μm 
channel are compared in Figure 2 with experimental 
observations in glass tubes.  Good qualitative agreement 
with observed shapes is seen.  Results are shown in Figure 
3 for a RBC in a bifurcation observed in the rat mesentery.  
Motions of several cells surrounded by plasma, without 
any closely interacting cells, were observed in successive 
video frames and digitized.  The vessel outline was also 
digitized and used to define the domain for corresponding 
simulations.  Close agreement between observed and 
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predicted centre-of-mass trajectories was obtained (results 
not shown).  Trajectories of cells with different starting 
points relative to the vessel walls were found to converge 
after a distance of about 60 μm. 
To simulate the motion of multiple interacting RBCs, 
periodic boundary conditions were used to represent a 
repeating configuration of cells.  As illustrated in Figure 4, 
RBCs underwent large deformations and close mechanical 
interactions in the simulated flow.  They also showed a 
tendency to migrate away from the wall, which was 
counteracted by cell-cell interactions.  Further investi-
gation of this phenomenon is needed to understand the 
factors determining the width of the cell-free layer. 
  

Time = 0 50 100 ms

A

y  = 00

y  = 0.5 m0 μ

y  = 1 m0 μ

B

 
Figure 2.  Predicted motion and deformation of cells 
flowing in an 8-μm channel.  Flow rate is adjusted so that 
cell velocity is approximately 1.25 mm/s.  Results are 
presented for cells with initial displacements 0, 0.5, 1 μm 
from the centre-line.  A.  Predicted cell shapes initially 
and after 50 and 100 ms.  Dot on cell outline represents a 
node fixed in the cell.  B. Observed human RBC shapes in 
a single glass capillary with diameter 7 μm.  Three cells 
are shown with varying orientations and degrees of 
asymmetry. 
 

 
Figure 3.  Observations and simulations of RBC motion 
in rat mesenteric microvessels.  A. Microvessels selected 
for observation.  Arrow: RBC whose motion was tracked.  
B. Superimposed digitized outlines of vessel wall and of 
selected isolated cells in successive video frames at 10-ms 
intervals.  Arrows show flow directions.  C. Predicted cell 
shapes at 20-ms intervals. 
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Figure 4.  Simulated motion of three interacting cells in a 
12-μm channel, using periodic boundary conditions.  A.  
Initial configuration.  B.  After 50 ms. 

CONCLUSION 
This two-dimensional method predicts shapes and 
trajectories of individual RBCs flowing in capillaries in 
good agreement with observations, and provides a method 
for simulating the motion of multiple interacting RBCs. 
Supported by NIH Grant HL034555. 
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