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ABSTRACT 
Bubble-particle encounter interaction is the first step of 
the particle collection by rising air bubbles in flotation and 
has been predicted based on the potential flow condition 
by Sutherland and others, leading to the approximate 
Generalised Sutherland Equation (GSE). In this paper, the 
bubble-particle encounter interaction with the potential 
flow condition has been analysed by solving the full 
motion equation for the particle employing a numerical 
computational approach. The GSE model was compared 
with the numerical results for the encounter efficiency. 
The comparison only shows good agreement between the 
GSE prediction and the numerical data for very fine 
particles (< 15 microns in diameter), the inertial forces of 
which are vanishingly small. For coarser particles 
typically found in flotation, a significant deviation of the 
GSE model from the numerical data has been observed. 
Details of the numerical methodology and solutions for 
the collision angle and encounter efficiency are described 
in the paper. The numerical results can be used for 
extending the GSE theory by considering the gravitational 
forces and the effect of the particle density. 

NOMENCLATURE 
E bubble-particle encounter efficiency 
f drag correction factor 
g acceleration due to gravity 
K′  dimensionless number, ( )1 0.5 /K Sδ ρ′ = + t  

K ′′  dimensionless number, ( )1.5 /K Sδ ρ′′ = t  

K′′′  dimensionless number, ( ) ( )22 / 9p bK UR Rρ δ μ′′′ = −  
R  interception number, R = Rp/Rb
Rb  bubble radius 
Rc  radius of grazing trajectory 
Rp  particle radius 
r radial coordinate  (Figure 1) 
St particle Stokes number, ( )22 / 9p bSt R U Rρ μ=  
t time 
U  bubble slip velocity 
vr scaled particle radial velocity (divided by U) 
vs scaled particle settling velocity (divided by U) 
vϕ scaled particle tangential velocity (divided by U) 
wr scaled water radial velocity (divided by U) 
wϕ scaled water tangential velocity (divided by U) 
 
β dimensionless number, ( )2 / 3Rf Kβ ′′′=  

δ water density 
μ liquid viscosity 
ρ particle density 

τ dimensionless time, / btU Rτ =  
ϕ polar coordinate (Figure 1) 

tϕ  angle of tangency 

INTRODUCTION 
Bubble-particle interaction is central to froth flotation 
widely used in the mineral industry. It is controlled by 
forces of various characters, including the long-range 
(inertial, hydrodynamic and gravitational) forces, the 
short-range (surface) forces, and the forces of interfacial 
capillarity. Since the governing forces are not 
interdependent, the particle-bubble interaction can 
conveniently be quantified by considering collision, 
attachment and detachment independently (Nguyen and 
Schulze, 2004). Collision is the approach of a particle to 
encounter a bubble and is governed by the fluid mechanics 
of the particle in the hydrodynamic force field around the 
bubble. The limit of the collision process is determined by 
the zonal boundary between the long-range hydrodynamic 
and interfacial force interactions (Deryaguin and Dukhin, 
1960-61). The inter-surface separation distance at the 
zonal boundary is of the sub-micrometer order. Once the 
particle approaches the bubble at a shorter separation 
distance, the atomic, molecular and surface forces are 
significant and the attachment process starts. The 
detachment process is governed by the capillary force, the 
particle weight and the detaching forces due to the 
turbulent eddies. 

The hydrodynamics of bubble-particle collision has 
been focused on the regime where the bubble surface is 
strongly retarded (immobile), caused by adsorption of 
surfactants, particles and other impurities from the 
solution (Gaudin, 1957; Flint and Howarth, 1971; Schulze, 
1989; Yoon and Luttrell, 1989; Finch and Dobby, 1990; 
Nguyen, 1994). In recent years bubble-particle collision 
with a mobile bubble surface has attracted intensive 
research (Dai et al., 1998; Dai et al., 2000). Research into 
the collision of bubbles with a mobile surface is driven by 
the fact that various surface contaminants on a bubble 
surface are in a dynamic state, known as a dynamic 
adsorption layer, and that during bubble rise in a flotation 
cell the surface contaminants are swept to the rear surface 
of the bubble by adjacent water. Thus, the forward part of 
bubble surfaces can remain mobile even when the bubbles 
reach terminal velocity, i.e. even when equilibrium of the 
mass transfer of surfactants is established. While the 
forward surface of bubbles in solutions is mobile, the 
surface contamination often forms an immobile (stagnant) 
cap at the rear (Clift et al., 1978; Sam et al., 1996; Zhang 
and Finch, 2001). It now can be established that not only 
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the surface of fresh bubbles is mobile, but the forward 
surface of aged bubbles on which bubble-particle 
interaction in actual flotation takes place can also be 
mobile. At the mobile surface of air bubbles, the 
tangential component of the liquid velocity is non-zero, 
but the condition of zero tangential stress is applied. At 
the immobile surface, both of the velocity component and 
stress are zero.    

The first model of bubble-particle interaction with a 
mobile bubble surface was published by K. L. Sutherland 
from CSIRO Minerals (Sutherland, 1948), who assumed 
water in a flotation cell to be described by the potential 
flow and employed a simplified particle motion equation 
without inertia. The Sutherland prediction for the bubble-
particle encounter efficiency, E, is described by 3E R= , 
where R is the interception number, defined as the ratio of 
the particle to bubble radius, /p bR R R= . The Sutherland 
model was found to over-predict the encounter efficiency 
and has been improved by incorporating inertial forces 
which are magnified at the mobile surface with a non-zero 
tangential velocity component of the liquid phase. For 
example, the Sutherland equation was extended to account 
for the influence of the inertial forces by Dukhin (Dukhin, 
1983). Nowadays, this extension, referred to as the 
Generalised Sutherland Equation (GSE), is described by 
(Dai et al., 1998): 

( ){23  sin exp cos 3 ln 1.8t tE R K Rϕ ϕ ⎡ ′′′= − +⎣ +

)

   

( ) ( }3 48 12cos 4cos / 3sint t tϕ ϕ ϕ ⎤− + ⎦   (1) 

where the angle of tangency, tϕ , is described as 

( )2arccos 1tϕ β β= + −     (2) 

Parameters β and K′′′  in these equations are defined by 

( ) 22
9

p

b

UR
K

R
ρ δ

μ
−

′′′ =     (3) 

2
3

Rf
K

β =
′′′

     (4) 

where U is the bubble (slip) velocity relative to the liquid 
phase, ρ and δ are the particle and liquid densities, μ is the 
liquid viscosity. The drag correction, f, in Eq. (4) was not 
considered by Dukhin (Dukhin, 1983) (f = 1), but it was 
later changed to f = 2 (Dai et al., 1998). 

In this paper, the (analytical) Generalised Sutherland 
Equation will be validated and extended using the exact 
computational solutions of the particle motion equation 
employed in the Sutherland theory. 

COMPUTATIONAL VALIDATION OF THE GSE 
The bubble-particle encounter interaction in flotation is 
schematically shown in Figure 1. The following equation 
for particle motion was used to obtain Eq. (1) for the 
Generalised Sutherland Equation (Dukhin, 1983; Dai et 
al., 1998): 

' "dv dwK K w
d dτ τ

− = −
r r

r r

where v and w describe the dimensionless particle and 
water velocities around the bubble surface, and the arrows 
over the symbols are used to describe the vectors. The 
dimensionless velocities are obtained by dividing the 
appropriate dimensional velocities by the bubble slip 
velocity, U. The dimensionless time in Eq. (5) is defined 
as / btU Rτ = , where t is the dimensional time. The 
dimensionless numbers describing the inertial effects are 
defined as ( )1 0.5 /K Stδ ρ′ = + ( and )1.5 /K Stδ ρ′′ = , 
where the particle Stokes number is defined as 

( )22 / 9p bSt R U Rρ μ= . 
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Figure 1: Schematic of the bubble-particle encounter 
interaction. The collision radius, Rc, is measured by the 
distance between the parallel lines of the path of the rising 
bubble and the grazing trajectory of settling particles 
when being far apart from the bubble surface.  and erer ϕ

r  
describe the unit vectors of the rotationally symmetrical 
coordinate system ( ),r ϕ . 
 

Equation (5) can be further simplified by considering 
the steady flow of the liquid, / 0w τ∂ ∂ =

r  and the 
rotational symmetry of the bubble-particle interaction, 
giving 

2 2

                                             

r r
r

r r

v wdv w wK K K w
d r r r r

w v

ϕ ϕ

τ ϕ

⎛ ⎞∂ ∂′ ′ ′′= + + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
+ −

r wϕ

 (6) 

                                             

r rr
r

v v w w w w wdvK K K w
d r r r r

w vϕ

ϕ ϕ ϕ ϕ

ϕ

τ ϕ
∂ ∂⎛ ⎞′ ′ ′′= − + + +⎜ ⎟∂ ∂⎝ ⎠

+ −

ϕ

 (7) v    (5) 
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where vr and vϕ are the radial and tangential components 
of the particle velocity, which are functions of the particle 
radial, r, and polar, ϕ, positions and can be described as 

r
drv
dτ

=       (8) 

dv r
dϕ
ϕ
τ

=      (9) 

The liquid velocity components contained in the above 
motion equation can be determined from the potential 
flow used in deriving the Generalised Sutherland Equation 
(Dukhin, 1983; Dai et al., 1998), giving 

( )31 cosrw r ϕ−= − −  and ( )31 0.5 sinw rϕ ϕ−= + . The 

initial conditions for the differential equations for particle 
motion are described as ( ) cosrv r ϕ= ∞ = −  and 

( ) sinv rϕ ϕ= ∞ = . 
 The particle motion Eqs. (6) and (7) were 
approximately solved to obtain the analytical solution for 
the GSE described by Eq. (1) (Dukhin, 1983; Dai et al., 
1998). To validate the GSE theory, Eqs. (6) and (7)  are 
numerically solved using the fourth-order Runge-Kutta 
method. The initial position ( 0 0,r )ϕ of the particle position 
needed for the numerical integration using the fourth-
order Runge-Kutta method can be chosen but it has to be 
sufficient far from the bubble surface, where the initial 
condition at infinity is satisfied. The particle trajectories 
far from the bubble surface are not influenced by the 
bubble surface and should be parallel. Eqs. (6) - (9) were 
discretised following the standard procedure of the Runge-
Kutte method for a system of differential equations of the 
first order (Rice and Do, 1995).  

The grazing trajectory for particle motion can be 
computationally found using the condition that there exists 
only one contact point between the bubble surface and the 
particle on the grazing trajectory. In this paper, this 
condition was computationally satisfied by trial-and-error, 
varying the initial particle position ( 0 0,r )ϕ . A particle 
position very close to the symmetric axis of the bubble 
rise was initially chosen to start the numerical integration 
for obtaining a particle trajectory. If the trajectory reached 
a point away from the bubble surface by† (1 )R+ , the 
integration was stopped and the initially chosen particle 
position was shifted away from the axis of symmetry by a 
very small increment, which was typically about 1×10-3. 
The new particle position was then used to calculate the 
corresponding trajectory for the particle. The contact 
between the bubble and particle surfaces was checked and 
the computation procedure was repeated until no contact 
was found computationally. The last trajectory was 
considered as the grazing trajectory. The polar position of 
the bubble-particle contact obtained with the last 
trajectory was determined to give the angle of tangency, 

tϕ . The distance between the parallel part of the last 
trajectory and the axis of symmetry was determined to 
give the collision radius, , as shown in cR Figure 1. The 

                                                                 
† Note that the dimensionless radial coordinate for the 
centre of particle in contact with the bubble surface is 
( ) / 1b p bR R R R+ = + .   

encounter efficiency was calculated using the following 
equation:     

2

c

b p

RE
R R

⎧ ⎫⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

    (10) 

The error in the computational determination of the 
encounter efficiency was found to be about ±1×10-6.  
 
 

 
Figure 2: Comparison between the computational results 
and Eq. (2) with fd = 1 (Dukhin, 1983) and fd = 2  (Dai et 
al., 1998) for the angle of tangency, tϕ , versus the 
particle (quartz) radius. 

 
Comparison between the computational solutions and 

analytical solutions for the angle of tangency, tϕ , 
described by Eq. (2) is shown in Figure 2. Good 
agreement between the computational results and the 
analytical solutions is observed only for (ultrafine) 
particles with radius smaller than 5 microns. Figure 2 
shows significant deviation of the analytical solutions for 
particles with radius bigger than 20 microns. Importantly, 
all the analytical solutions predict that the angle of 
tangency decreases with increasing particle radius, while 
the exact numerical solutions only show the decrease for 
very small (ultrafine) particles. There exists a particle size 
where the angle of tangency has a minimum. Beyond this 
minimum, other inertial effects are greater than the 
centrifugal effect, leading to the increase in the angle of 
tangency towards 90 degrees when the inertial effects 
control the bubble-particle encounter and collision. 
Because Eq. (2) has been used for predicting the 
attachment efficiency (Dai et al., 1999; Ralston et al., 
2002; Duan et al., 2003; Pyke et al., 2003), the significant 
difference in the angle of tangency shown in Figure 2 will 
have a significant consequence in the modeling and 
predicting bubble-particle attachment interaction in 
flotation, in particular in flotation of non-ultrafine 
particles.  
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Comparisons between the computational solution and 
the GSE Eq. (1) and Sutherland original equation for the 
encounter efficiency are shown in Figure 3. Good 
agreement between the GSE equation and the 
computational results is only observed for ultrafine 
particles. The deviation of the GSE equation from the 
computational results is significant for non-ultrafine 
particles. Interestingly, the prediction by the original 
Sutherland equation is closer to the computational results 
for non-ultrafine particles.  

 
 

 
Figure 3: Comparison between the computational results 
(points) and the Sutherland Equation, E= 3R, and 
Generalised Sutherland Equation (Dai et al., 1998; Ralston 
et al., 1999), i.e. Eq. (1)  with fd = 1 or 2, for the encounter 
efficiency, E, versus the particle (quartz) radius. 

COMPUTATIONAL EXTENSION OF THE GSE 
The key equation of the GSE theory is described by Eq. 
(5) which does not contain gravitational forces. The first 
extension of the GSE theory is to include the particle 
weight and buoyancy. The extended equations useful for 
the numerical integration can be obtained from Eqs. (6) 
and (7), giving 

2 2

                                      cos

r r
r

r r s

v wdv w wK K K w
d r r r r

w v v

ϕ ϕ

τ

ϕ

⎛ ⎞∂ ∂′ ′ ′′= + + −⎜⎜ ∂ ∂⎝
+ − −

r wϕ

ϕ
⎟⎟
⎠  (11) 

                                            sin

rr
r

s

v v w w w w wdvK K K w
d r r r r

w v vϕ

ϕ ϕ ϕ ϕ

ϕ

τ ϕ
ϕ

∂ ∂⎛′ ′ ′′= − + + +⎜ ∂ ∂⎝
+ − +

rϕ ⎞
⎟
⎠  (12) 

where vs accounts for the effect of the gravitation forces 
on the bubble-particle encounter interaction and is 
described as  

( )22
9

p
s

R g
v

U
ρ δ
μ

−
=     (13) 

Equations (11) and (12) can numerically be integrated 
following the same technique and procedure described in 
the previous section. The angle of tangency and the 
encounter efficiency can be determined similarly.  

The numerical results are shown in Figure 4 and 
Figure 5 for the angle of tangency and encounter 
efficiency, respectively. The particle density has very 
strong effect on the angle of tangency and encounter 
efficiency. The deviation of the angle of tangency from 90 
degrees is significant at low density. Similarly to the 
results presented in the previous section, the angle of 
tangency decreases from 90 degrees with increasing the 
particle size, reaching a minimum and then creasing back 
to 90 degrees. This feature of our computational 
modelling is beyond the capability of the generalised 
Sutherland theory. 

The influence of the particle density on the encounter 
efficiency is significant for coarse particles as can be seen 
from Figure 5. Again, the feature is beyond the scope of 
the generalised Sutherland theory. Finally, the efficiency 
increases with increasing the particle density and size as 
expected. 
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Figure 4: Numerical results for the angle of tangency 
versus the particle size and density as obtained from Eqs. 
(11) and (12) for the extended generalised Sutherland 
theory. The bubble size and rise velocity are the same as 
those shown in Figure 2. The particle density increment is 
500 kg/m3.  
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Figure 5: Numerical results for the encounter efficiency 
versus the particle size and density as obtained from Eqs. 
(11) and (12) for the extended generalised Sutherland 
theory. The bubble size and rise velocity are the same as 
those shown in Figure 2. The particle density increment is 
500 kg/m3.  

CONCLUSION 
The particle encounter interaction with an air bubble with 
a mobile surface has been computationally analyzed. The 
computational results have been used to validate 
Sutherland’s theory on the bubble-particle collision 
interaction and its generalization with the inclusion of the 
centrifugal (inertial) effect. It was shown in the paper that 
the generalised Sutherland theory only agreed with the 
computational simulation for very fine particles (< 10 
microns in diameter). For non-ultrafine particles, a 
significant deviation of the GSE model from the numerical 
data has been observed for the angle of tangency and the 
encounter efficiency. The computational modelling has 
been extended to include gravitational forces. The 
extended generalised theory shows very significant effect 
of the particle density on the angle of tangency as well as 
on the encounter efficiency. Finally, the computational 
results show that there exists a particle size where the 
angle of tangency has a minimum. For bigger particles, 
the other inertial effects on particle collision are more 
significant than the centrifugal effect and, consequently, 
the angle of tangency increases with increasing particle 
size towards 90 degrees. The deviation of the angle of 
tangency shown in this paper will have a significant 
consequence in modeling and predicting the particle 
attachment by air bubbles in flotation. 
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