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ABSTRACT 
The flotation of ultrafine (nano and submicron) particles is 
important in the mineral processing and wastewater 
treatment industries. The flotation efficiency of these 
particles is not adequately described by the conventional 
theory, based on the interception and collision 
mechanisms. This paper describes a computational 
modelling for ultrafine particle flotation and its 
comparison with experimental results obtained in a small 
laboratory cell with fine bubbles. The model was 
developed by incorporating fundamental theories of mass 
transfer, Brownian diffusion, microhydrodynamics of 
particles in the vicinity of a slip surface of air bubbles, and 
colloidal interactions that come into effect at small 
separation distances. The governing equation describing 
the particle collection was numerically solved. The 
experiments were conducted with silica particles of 40 
nm, 100 nm, and 3μm in diameter and at 1% (by weight) 
concentration. Cetyltrimethylammonium bromide and 
Dowfroth 250 surfactant were used as the collector and 
frother, respectively. The surface charge of the particles 
and bubbles in the surfactant solutions were measured 
with the Brookhaven ZetaPlus apparatus and Rank 
Brothers Zeta Meter. No homocoagulation of the silica 
particles was confirmed and the flotation separation was 
principally due to heterocoagulation between particles and 
bubbles. Both the computational and experimental results 
show a minimum in the collection efficiency at a particle 
size in the order of 100nm. With larger particles, the 
interception and inertial collision predominate the particle 
capture, while the diffusion and colloidal forces control 
the collection of particles with a size smaller than the 
transition size. 

NOMENCLATURE 
C  particle concentration  
Cb  particle concentration in the bulk 
D  tensor of the particle diffusivity 
D∞ particle diffusivity in the bulk ( BD k Tm∞ ∞= ) 
E Collection efficiency 
Fex  external forces (Fr = radial & Fϕ = tangential) 
Fedl  electrical double-layer surface force 
Fhyd hydrophobic surface force 
FvdW van der Waals surface force 
fi  microhydrodynamic resistance factor (i = 1 to 4)  
h  depth of liquid in the flotation cell 
ir radial unit vector 
iϕ tangential unit vector 
J particle flux (Jr = radial & Jϕ = tangential) 
Ki hydrophobic force constant (i = 1, 2)  
k flotation rate constant 
kB Boltzmann constant 

m  tensor of particle mobility 
m∞  particle mobility in the bulk, 1/ 6 pm Rπμ∞ =  
np  particle refractive index 
Q  gas volumetric flow rate 
R  tensor of resistance 
Rb  bubble radius 
Rp  particle radius 
r  radial coordinate (Figure 1) 
T absolute temperature 
t  reference time 
U  bubble slip velocity 
V non-Brownian particle velocity 
Vs  particle terminal settling velocity 
Vc  volume of flotation cell 
W water velocity  (Wr = radial & Wϕ = tangential) 
z  stretching variable, exp( )br R z=  
 
κ  Debye constant 
λi decay length of hydrophobic force (i = 1, 2) 
μ water viscosity 
ρ difference between the particle and water densities 
ψp  particle surface potential  
ψb  bubble surface potential 
ϕ  polar coordinate (Figure 1) 

INTRODUCTION 
The advances currently being made in grinding 
technology are allowing large, complex low-grade mineral 
deposits to be exploited economically. The continual 
reduction in grade is forcing miners to produce ultra fine 
particles in order to liberate mineral particles from the ore, 
e.g. the McArthur River and Century Zinc base metal 
deposits (Potts, 2003). However, ultrafine particles are 
usually difficult to be recovered by flotation because the 
particle mass is so small that the efficiency of particle 
capture by air bubbles is significantly reduced. Submicron 
particles may be too large to be significantly influenced 
by Brownian diffusion, but are so small that the electrical 
double-layer and viscous forces are much greater than the 
inertial forces. This makes the submicron particles 
difficult to capture with air bubbles. These particles 
simply follow the water streamlines around the bubbles 
without making contact. Nanoparticles in the size range 10 
to 100 nm have many of the characteristics of large 
molecules and undergo Brownian diffusion, which can 
enhance the collection by bubbles. 

A number of theories have been developed to 
estimate the flotation recovery of nanoparticles, including 
Reay and Ratcliff (Reay and Ratcliff, 1973), Collins and 
Jameson (Collins and Jameson, 1977) and Ramirez et al. 
(Ramirez et al., 1999; Ramirez et al., 2000). An 
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interesting feature of these predictions is that at a certain 
particle diameter, below 1 µm, the recovery of fine 
particles begins to increase with decreasing particle 
diameter. This is the opposite to the effect observed for 
the inertial-controlled flotation of particles between 1 and 
10 microns in diameter. This phenomenon, however, does 
not appear to have been observed experimentally. 

As the particle size decreases below one micron, its 
inertia becomes insignificant, and Brownian motion, 
hydrodynamic interaction and surface force interaction 
become the driving force for bubble-particle collection. 
The simplest of the three models, developed by Reay and 
Ratcliff (Reay and Ratcliff, 1973), accounts only for the 
Brownian motion, while the Collins model (Collins and 
Jameson, 1977) accounts for hydrodynamic interactions 
and London-Van der Waals force, in addition to the 
Brownian motion. While the Ramirez model (Ramirez et 
al., 1999; Ramirez et al., 2000) accounted for the same 
effects as the Collins model, the hydrodynamic mobility 
was calculated as a function of inter-particle distance to 
take account of the Marangoni effect. This model involved 
the formulation of the Fokker-Planck equation for the 
pair-distribution function and was designed to account for 
bubbles with different mobilities. 

There are a number of significant problems with each 
of these models including their neglect of the electrical 
double layer interaction force and the hydrophobic force 
in their surface force calculations. Also, Collins applied 
the traditional Hamaker constant combining rules in his 
model, which give a negative Hamaker constant, 
indicating that the thin water film between a gas bubble 
and a solid surface is stable and should never disrupt 
spontaneously, which is contrary to observation (Nguyen 
and Schulze, 2004). This issue was recently addressed by 
Nguyen (Nguyen et al., 2001) who proposed a model for 
the Hamaker constant which changes with inter-centre 
particle-bubble distance.  

There has only been limited experimental work 
investigating the collection efficiency of particles. Thus 
Cassell et al. (Cassell et al., 1971) floated 1μm 
polystyrene latex sphere and Reay and Ratcliff (Reay and 
Ratcliff, 1975) floated glass spheres of diameter 1-30μm 
and 6μm latex particles. The results from both studies 
were found to match the simple Reay and Ratcliff model 
(Reay and Ratcliff, 1973), except for the charged latex 
particles. The neglect of the electrical double layer 
interaction force in the model was cited as the key reason 
for the discrepancy.  

In an early study (Fukui and Yuu, 1980), 0.6μm 
polystyrene particles were floated using 20μm bubbles 
generated by electrolysis. A single collection efficiency of 
0.0022 was determined for neutrally charged submicron 
particles, which is in the same order as the results 
predicted by (Reay and Ratcliff, 1973). Although the 
results appear to agree with theory, they must be 
questioned on experimental grounds. The electrolyte 
AlCl3 used in the experiment can hydrolyse to form a 
powerful coagulating agent and the possibility of particle 
aggregation cannot be ruled out. 

In this paper, we present a computational model for 
particle collection by Brownian diffusion and convection 
forces. Fundamental theories of convection, micro-
hydrodynamics and colloidal forces are incorporated. The 
colloidal forces considered include van der Waals, 
electrical double-layer and hydrophobic forces. The model 

simulations are compared with experimental results for the 
flotation of silica ranging from 40nm to 3μm in diameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of the interception (1), gravity (2) 
and Brownian (3) transport mechanisms for fine particles 
towards a rising bubble in a rotationally symmetrical 
coordinate system (r, ϕ). The thick lines describe the 
particle trajectory while the thin lines describe the liquid 
streamlines. 

MODEL DESCRIPTION 
The model described in this paper considers three 
predominant transport mechanisms: interception, gravity 
and Brownian diffusion (Figure 1). Inertial forces are 
neglected. The transport of submicron particles satisfies 
the conservation of mass, given by 

/C t 0∂ ∂ + ∇ ⋅ =J      (1) 

where the particle flux, J, due to the convection and 
diffusion processes can be described by 

C C= − ΔJ V D      (2) 

The particle velocity in Eq. (2) can be determined from 
the force balance by considering the effect of the micro-
hydrodynamics on the particle motion around the bubble, 
giving 

ex= ⋅ + ⋅V R W m F     (3) 

The tensors of diffusivity in Eq. (2) and mobility in Eq. 
(3) are related by the Stokes-Einstein equation: 

Bk T=D m . The tensors are described by (Nguyen and 
Schulze, 2004) 
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where the microhydrodynamic resistance factors are 
described by (Nguyen and Schulze, 2004) 
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The water velocity in the radial and tangential direction 
may be calculated using the Hadamard-Rybczynski theory 
(Nguyen, 1999). The radial and tangential components of 
the external forces, Fr and Fϕ, are described as 

34
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Equations for the van der Waals, electrical double-layer 
and hydrophobic forces can be found in (Nguyen and 
Schulze, 2004). Eq. (1) can be now rewritten as 

( )2
2

1 1 1 (sin ) 0
sinrr J J

r r r ϕϕ
ϕ ϕ

∂
+

∂ ∂
=   (12) 

where 

2 1 1r r r
CJ W f C D f m f F C
r∞ ∞

∂
= − +

∂
   (13) 

3
4

D f C
3J W f C m f F C

rϕ ϕ ϕϕ
∞

∞
∂

= − +
∂

   (14) 

Since the colloidal forces change rapidly in the limit 
as r approaches the bubble radius, the exponential 
stretching of the radial coordinate, , can be 
used to increase accuracy in the numerical solution. 
Inserting Eqs. 

exp( )br R z=

(13) and (14) into Eq. (12) gives 
2 2

1 32 2 0z
C C C Cf f B B CB
z z ϕϕ ϕ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ c   (15) 

Parameters Bz, Bϕ and Bc are functions of the particle 
radial and polar positions, liquid velocity, the bubble and 
particle terminal velocities, surface forces, the bubble and 
particle diameters, and the particle diffusivity D∞.  

Equation (15) may be solved using the boundary 
conditions:  at ϕ = 0 and ϕ = π, / 0C r∂ ∂ =
( ), bC r Cϕ→ ∞ =  and . The first and 

second derivatives in Eq. 
( )0, 0C r ϕ→ =

(15) on a non-uniform mesh can 
be approximated with the central finite difference scheme. 
The over-relaxation method can be applied to solve the 
algebraic equations. The initial solutions can be obtained 
using the parabolic approximation with  and 
the Crank-Nicholson numerical method. 

2 2/ 0C ϕ∂ ∂ =

Due to the nature of the molecular interactions, the 
colloidal forces, in particular the van der Waals and 
double-layer forces are infinitely large, as the particle 
approaches the bubble surface. As a result, the particle 
transport equation becomes very stiff. Several numerical 
difficulties are commonly encountered with stiff partial 
differential equations. These numerical difficulties are of 
two types: overshoot and numerical dispersion. Numerical 

dispersion occurs when the numerical step in the radial 
direction is too large, while overshoot is significant if the 
numerical step in the transverse direction is too coarse. 
Due to these numerical difficulties, oscillations may 
appear in the numerical solution, leading to slow 
convergence and numerical instability. Overshoot and 
numerical dispersion can be controlled using the mesh 
Peclet number and the Courant number. In relation to Eq. 
(15) the mesh Peclet number is defined as 1/zB z fΔ , 

where zΔ  is the maximum step size in the radial 
direction. The Courant number is defined as 

1/ /zB z fϕΔ Δ , where ϕΔ  is the maximum step size in 
the transverse direction. Designing a numerical model 
with small mesh Peclet and Courant numbers effectively 
decreases oscillations, improves accuracy and decreases 
numerical dispersion. Most numerical methods give an 
accurate solution when these numbers are smaller than 
unity. These criteria were used to obtain the solutions 
presented in this paper. 

Due to the stiffness of the governing equation, 
extremely small step sizes are required to prevent the 
numerical oscillation and instability, particularly in the 
region in the vicinity of the bubble surface. It is also noted 
that the colloidal forces which cause the stiffness problem 
diminish at large separation distances. Therefore, an 
extremely fine mesh is not required for the region far from 
the bubble surface. Consequently, the computational 
domain can be divided into two regions, an inner and 
outer region. In the inner region, where the colloidal 
forces are very strong, an exponentially decreasing 
(towards the bubble surface) step size in the separation 
distance H was used. The largest separation distance of 
the inner region was equal to 500 nm. In the case of no 
attractive forces, the shortest separation distance of the 
inner region was about 10-10 times the particle radius. The 
step size increases gradually towards the end of the inner 
region. A uniform step size with relatively large increment 
in the separation distance was used for the outer region. 

Once the particle concentration distribution around 
the bubble is determined, the local radial flux, Jr, of 
particles at the bubble surface can be determined from Eq. 
(2), and the overall rate of collection is obtained by 
integration. Division by the simple swept-volume rate of 
collection yields the collection efficiency E, which is 
described by: 

( ) ( )
0

2 0, sinr
s b

E J z
U V C

π

dϕ ϕ ϕ= − →
+ ∫   (16) 

EXPERIMENTAL 
The flotation experiments were conducted in a one-litre 
batch column-type cell of internal diameter 70mm and of 
a height variable from 305 to 405mm. The bubbles were 
produced by introducing nitrogen gas through a 68mm 
diameter Pyrex glass sintered disc of porosity three 
(Corning Ltd, Artington, Surrey, UK), to produce an 
average bubble diameter, determined photographically, of 
150μm. The volumetric gas flow rate was 80cm3/min. The 
height of the froth phase was 285mm and was maintained 
by a constant feed of flotation solution from a large 
diameter feed tank 

The results obtained from the model were compared 
against experimental results obtained from the flotation of 
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silica particles ranging in diameter from 40 to 3000nm. A 
2% concentration of Snowtex 20L, Snowtex ZL (Nissan 
Chemical America Corporation, Houston, Texas, USA) 
and Nyasil 20 (Nyacol Nanotechnologies Inc, Ashland, 
Massachusetts, USA) particles were floated separately and 
the tests repeated in triplicate.  

The frother used in the experiments was Dowfroth 
250 (Dow Chemical Corporation, Ludington, Michigan, 
USA) at a concentration of 30 ppm. The collector  was 
cetyltrimethyl ammonium bromide (CTAB) (Ajax 
Chemicals, Sydney, Australia) at a concentration of 5 x 
10-5M. In these experiments the total recovery of particles 
was low, typically 54% after 50 minutes.  

The rate constant for each size particle floated was 
determined by plotting the log of the concentration of 
particles captured against time . The 
collection efficiency was determined directly from the rate 
constant, k, by (Nguyen and Schulze, 2004) 

/dC dt kC= −

4
3

b cR kVE
Qh

=      (17) 

The experimental work also investigated whether the 
nanoparticles were recovered by true flotation by means 
of bubble-particle attachment interactions or entrainment 
by means of water recovery into the froth products. The 
experimental methods and results have been published 
(George et al., 2004) and show that the level of true 
flotation and entrainment can be determined with high 
certainty and that the proportion of the colloidal particles 
recovered by true flotation was quite high. The high 
efficiency of true flotation obtained with colloidal silica is 
due to the low particle concentration and the fine bubble 
size, 150um, used in the experiments. 

The particle size distribution was assessed using three 
different techniques, including laser light scattering, 
photon correlation spectroscopy, and transmission electron 
microscopy. The laser light scattering was performed 
using a Mastersizer 2000 (Malvern Instruments Ltd, 
Worcestershire, UK). The Mastersizer measures particles 
ranging in size from 50 to 800 nm. The photon correlation 
spectroscopy was performed using a Dynamic Light 
Scattering unit ‘DLS/SLS–5022F’ (ALV-laser 
Vertriebsgesellschaft GbmH, Langen, Hessen, Germany). 
This instrument measures the Doppler frequency shift of 
the scattered light from a particle undergoing random 
Brownian motion. The Doppler frequency shift is 
proportional to the hydrodynamic radius of the particle. A 
second photon correlation spectroscopy unit, a Malvern 
Zetasizer Nano S (Malvern Instruments Ltd, 
Worcestershire, UK) was also used to measure the particle 
size distribution between 1nm and 200nm. The 
transmission electron micrographs were taken using a 
JEM-1200EX11 transmission electron microscope (Jeol 
USA, Peabody, Massachusetts, USA). The micrographs 
were digitised and sized using the computer program 
Optimas 6.1 (Media Cybernetics Corporation, Carlsbad, 
California, USA). 

The size of the nitrogen bubbles rising in the flotation 
cell was measured by inserting a solution-filled 
photographic cell into the column and taking scaled 
photos of the bubbles rising up through the pulp and into 
the photographic cell (Ahmed and Jameson, 1985). The 
bubble size was measured in a solution of 30ppm 
Dowfroth 250 and 5x10-5M CTAB. A series of ten digital 

photographs were taken and the bubble size was measured 
using the computer program Optimas 6.1.  

The zeta potential of the silica particles were 
measured using a ZetaPlus apparatus (Brookhaven 
Instrument Corporation, Holtsville, New York, USA). 
Heterocoagulation of particles was checked with jar tests. 
Stable suspensions were confirmed with no evidence of 
settling over a 24-hour period.  

The electrophoretic mobility of nitrogen bubbles in 
the flotation solutions was measured using a 
microelectrophoresis apparatus (Rank Brothers Ltd, 
Bottisham, Cambridge, UK) and the technique described 
by Jameson et al. (Collins et al., 1978; Kubota and 
Jameson, 1993). This apparatus was modified to attach a 
Fire-I 400 digital video camera (UniBrain Ltd, San 
Ramon, California, USA) to capture the motion of very 
fine bubbles at the stationary plane of the electrophoretic 
cell. The electrophoretic mobility was measured in an 80 
volt, 80mm length electric field. The nitrogen bubbles 
were generated in a 304L SS DOT-3A 1800 pressure 
vessel (Swagelok, Highland Heights, Ohio, USA) with a 
1000 cm3 volume. The vessel was filled with 600ml water, 
purified using the Milli-Q plus system, and cooled to 5oC. 
It was then pressurized to 1000 kPa with high purity 
nitrogen gas (BOC Gases Australia Ltd, Sydney, NSW, 
Australia) for a 24-hour period. The rise velocity of the 
bubbles in the surfactant solutions was determined and 
was well correlated with the velocity predicted by the 
Stokes law for fine bubbles with a rigid (immobile) 
interface, which was due to the adsorbed surfactant 
molecules. Therefore, the simple Smoluchowski equation 
was used to convert the electrophoretic mobility of the 
bubbles into the zeta potential. 
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Figure 2: Typical oscillation in the particle concentration 
profile produced by a coarse grid when strong attractive 
colloidal forces are present. Inputs for the numerical 
solution include ϕ = 0, Rp = 100 nm, Rb = 1 mm, ρ = 1500 
kg/m3, np = 1.6, 1/κ  = 50 nm, ψp = 0, ψb = 0, K1 = –7 
mN/m, K2 = –6 mN/m, λ1 = 6 nm, λ2 = 20 nm. Thickness 
of the inner and outer regions was 300 nm and 3000 nm, 
respectively. 

RESULTS AND DISCUSSION 
Calculations were carried out in order to determine the 
optimal mesh steps, and the size of the inner and outer 
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regions. These calculations were carried out for 
hydrophobic particles in the presence of strong attractive 
double-layer and hydrophobic forces. Numerical solutions 
become oscillatory if the mesh is insufficiently fine, due 
to the stiffness of the differential equation, noted earlier. 
An example of the oscillation in the particle concentration 
obtained with a coarse grid is shown in Figure 2. The 
number of nodes in the inner region was 50. The total 
number of nodes in the radial direction was 340. In terms 
of increment in the separation distance, the smallest step 
size in the inner region was about 0.035. A stable solution, 
shown in Figure 3, was obtained when the number of 
nodes in the inner region was increased and the radial step 
size in the inner region was decreased. In Figure 3, the 
data shown by the filled circles was obtained when the 
number of nodes in the inner region was increased to 100, 
while the minimal step size was decreased to 51.4 10−× . 
The data shown by the open circles was obtained with 200 
nodes in the inner region and  for the minimal 
radial step size. The two sets of data were essentially 
identical. 

106.5 10−×
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Figure 3: Correct numerical solutions for particle 
concentration distributions produced with fine (filled 
circles) and very fine mesh (open circles). Inputs for 
numerical solution are described in the caption to Figure 
14. Note the logarithmic scale used on the horizontal axis. 

 
In the numerical computation, the (outer) boundary 

condition far from the bubble surface (at infinity) must be 
imposed at some finite distance measured from the bubble 
surface. The finite distance was numerically found by trial 
and error. In this procedure, a number of the finite 
distances were selected to solve the governing equation. 
Then the numerical results for the particle concentration 
obtained with different values for the distances were 
compared. The finite distance was determined when no 
significant difference in the particle concentration 
distributions obtained with two consecutive values for the 
finite distance was found. A relative error of 0.1% in the 
relative concentration was used as the quantitative 
measure. Typically, the finite distance 200Rp was found to 
satisfy the requirement. Figure 4 shows typical profiles of 
the particle concentrations obtained with different 
numerical values for the position of the outer boundary. 
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Figure 4: Numerical solutions for particle concentration 
profiles obtained with different maximal separation 
distances used to impose the infinity boundary condition. 
Inputs for the numerical solution include ϕ = 0, Rp = 10 
nm, Rb = 1 mm, ρ = 1500 kg/m3, np = 1.6, κ = 1/50 nm-1, 
ψp = 10 mV, ψb = 40 mV, K1 = 0, and K2 = 0. 
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Figure 5:Theoretical prediction for the collection 
efficiency versus the particle size and the bubble surface 
potential. The numerical constants included the bubble 
diameter (150μm); particle refractive index (1.54), density 
(2600kg/m3) and surface potential (-35mV); Debye length 
(50 nm); and the hydrophobic force parameters: K1 = -
7mN/m, K2 = -6mN/m, λ1 = 6nm and λ2 = 20nm. 

 
Predicted values of the collection efficiency are 

shown in Figure 5 for values of the bubble surface 
potential from 0 to -50mV. The constants used in the 
calculations include the particle density, surface potential 
and bubble diameter measured in the experiment. The 
empirical hydrophobic decay lengths, λ1 and λ2 along with 
the associated hydrophobic force constants, K1 and K2, 
agree with the measured data using an atomic force 
microscope. Greater positive charges lead to decreases in 
the predicted collection efficiencies. The particle diameter 
where the minimum collection efficiency occurs 
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decreased from around 100nm down to 20nm across the 
range of bubble potentials. For particles sizes below the 
minimum, the collection efficiency increases because of 
the increased Brownian diffusivity. 

Results from the model are compared with the 
experimental results in Figure 6. The experimental results 
obtained from the flotation of three different types of 
silica are compared with the model simulation for bubble 
zeta potentials of -50mV and -30mV. The zeta potential of 
the bubble in a solution of 5x10-5M CTAB was measured 
as -55mV. The addition of a neutral frother molecule 
should take up some of the sites on the bubble surface 
previously occupied by the CTAB molecules, thereby 
reducing the overall zeta potential of the bubbles. The 
predicted particle diameter at minimum collection 
efficiency is in reasonable agreement with the data, 
although the model over-predicts the collection efficiency 
for the larger particle diameters. 
 

0.0001

0.001

0.01

0.1

1

10 100 1000 10000
Particle diameter (nm)

C
ol

le
ct

io
n 

ef
fic

ie
nc

y,
  E

Snowtex ZL Nyasil 20
Snowtex 20L model, -50 mV
model, -30 mV

 
Figure 6: Comparison between model and experimental 
data for collection efficiency versus particle diameter. The 
numerical constants used in the calculation were the same 
as Figure 5, except for K2 = -20mN/m in the simulation 
with -30mV for the bubble zeta potential. 

CONCLUSION 
A computational model has been developed for predicting 
the collection efficiency of nano and submicron particles. 
The model included viscous interactions, Brownian 
diffusion, colloidal forces and microhydrodynamics of 
particles in the vicinity of a slip surface of rising air 
bubbles that come into effect at small separation distances 
with the formation of thin liquid films. A finite difference 
scheme with mesh refinement in the vicinity of the air 
bubble surface was used to discretise the stiff partial 
differential equation for the particle concentration. The 
mesh refinement produced stable numerical solutions 
without oscillation in the particle concentration, which 
otherwise occurred due to the stiffness of the differential 
equation and coarseness of the numerical mesh. 
Predictions from the model were compared with 
experimental results, from the flotation of silica particles 
ranging in diameter from 40 nm to 3 μm, using 150 µm 
bubbles. Both the theoretical and experimental results 

show the collection efficiency to have a minimum at a 
particle size in the order of 100nm. With larger particles, 
the interception and collision mechanisms predominate, 
while the diffusion and colloidal forces control the 
collection of particles with a size smaller than the 
transition size. 
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