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ABSTRACT 
A numerical investigation into the particle-turbulence interaction 
behaviour of dilute gas-particle flows over a backward-facing 
step geometry is reported. An Eulerian two-fluid model with 
additional turbulence transport equations for particles is 
employed. RNG based k-ε model is used as the turbulent closure 
wherein additional transport equations are solved to better 
represent the combined gas-particle interactions. Three different 
particle classes are considered and their streamwise velocities 
and fluctuations are compared against the experimental data of 
Fessler & Eaton (1995).  
 
INTRODUCTION 
Dilute two-phase flows are found to be critical part in many 
industrial and mining processes, such as pneumatic transporters, 
pulverized coal combustion equipments, spray drying, cooling 
and also sand blasting. Numerical simulations of these classes of 
particle-laden flows are complicated by the fact that in addition 
to the modeling of single-phase turbulence, special 
considerations should also be made to incorporate particle 
interaction with the primary turbulent flow field.  
 
In this paper, we present the results of the mean streamwise 
velocities; fluctuating velocities for both the carrier gas and 
particle phases, in addition particle number density (PND) 
results for different classes of particles considered are compared 
against the well established experimental data of Fessler and 
Eaton (1995). The re-attachment length for three particles along 
with two additional particles whose Stokes number is far less 
than other three has also been reported. 
 
GOVERNING EQUATIONS 
The Eulerian two-fluid model developed by Tu and Fletcher 
(1995) and Tu (1997) used in this study considers the gas and 
particle phases as two interpenetrating continua. Hereby, a two 
way coupling is achieved between the dispersed and the carrier 
phases. 
 
The underlying assumptions employed in the current study are: 
1) The particulate phase is dilute and consists of mono disperse 
spherical particles. 
2) For such a dilute flow, the gas volume fraction is 
approximated by unity. 
3) The viscous stress and the pressure of the particulate phase 
are negligible. 
4) The flow field is isothermal. 
 
Gas phase: 
 
The governing equations in Cartesian form for steady, mean 
turbulent gas flow are obtained by Favre averaging the 
instantaneous continuity and momentum equations 
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Eq. (1) and (2) respectively are the continuity and momentum 
equation of the carrier gas phase, where 

gggg panduu ',,ρ  are 

the bulk density, mean velocity, fluctuating velocity and mean 
pressure of the gas phase, respectively. νgl is the laminar viscosity 
of the gas phase. FDi is the Favre-averaged aerodynamic drag 
force due to the slip velocity between the two phases and is 
given by 
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where the correction factor f is selected according to Schuh et 
al.(1989) 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≤<+

≤<+

=

pp

ppp

pp

f

Re2500Re0167.0

2500Re200Re0135.0Re914.0

200Re0Re15.01
282.0

687.0

 

            (4) 
 
with the particle response or relaxation time given by 

, wherein d)18/(dt 2
pp glgs νρρ= p is the diameter of the particle. 

The carrier gas phase uses an eddy-viscosity model, in which νgt is 
the turbulent or ‘eddy’ viscosity of the gas phase, which is 
computed by ν . This is achieved by separately 

solving transport equations for kinetic energy (k
εμgt C= ( / )k g g

2

g) and 
dissipation rate (εg) as per the RNG theory (Yakhot and Orszag 
1986).  
 
Particulate Phase: 
 
After Favre averaging, the steady form of the governing 
equations for the particulate phase is 
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where 
ppp uandu ',ρ  are the bulk density, mean and 

fluctuating velocity of the particulate phase, respectively.  In 
equation (12), there are three additional terms representing the 
gravity force, aerodynamic drag force, and the wall-momentum 
transfer force due to particle-wall collisions, respectively. The 
gravity force is gF pρ=Gi

, where g is the gravitational 

acceleration.  
 
NUMERICAL PROCEDURE 
The simulated results are compared against the experimental 
data of Fessler & Eaton (1999) for a gas-particle flow in a 
backward-facing step. Three classes of particles are considered 
in the study, their material properties and also their 
characteristics are tabulated in Table 1. The governing 
transport equations are discretized using a finite-volume 
approach. The equations are solved on a nonstaggered grid 
system. Third-order QUICK scheme is used to approximate the 
convective terms, while second-order accurate central 
difference scheme is adopted for the diffusion terms. The 
velocity correction is realized to satisfy continuity through 
SIMPLE algorithm, which couples velocity and pressure. At 
the inlet boundary the particulate phase velocity is taken to be 
the same as the gas velocity. The concentration of the 
particulate phase is set to be uniform at the inlet. At the outlet 
the zero streamwise gradients are used for all variables. The 
wall boundary conditions are based on the model of Tu and 
Fletcher (1995). 

Nominal Diameter(μm) 90 150 70 
Material Glass Glass Copper 

Density(kg/m3) 2500 2500 8800 
Stokes Number (St) 3.7 7.4 7.1 

Particle Reynolds number 
(Rep) 

2.7 9.0 4.0 

Table 1. Properties of the dispersed phase  
 
All the governing equations for both gas and particle phase are 
solved sequentially at each iteration. The solution process 
starts by solving the momentum equations of the gas phase 
followed by the pressure-correction through continuity. This is 
then followed by solution of turbulence equations for the gas 
phase, whereas the solution process for the particle phase 
starts by solving the momentum equations followed by the 
concentration and then by the gas-particle turbulence 
interaction and ends by solving the turbulence equation for the 
particulate phase. At each global iteration, each equation is 
iterated, typically 3 to 5 times, using a strongly implicit 
procedure (SIP).The above solution process is marched 
towards a steady state and is repeated until a converged 
solution is obtained. 

RESULTS AND DISCUSSION 
 
 
 
 
 
 
 
 
 

Figure 1 shows the schematic sketch of the test section used 
for the computations. As the span wise z-direction 
perpendicular to the paper is much larger than the y-direction 

used in the experiments of Fessler and Eaton (1999) the flow 
is considered to be essentially two-dimensional. The backward 
facing step has an expansion ratio of 5:3. The Reynolds 
number over the step works out to be 18,400 calculated based 
on the centerline velocity and step height (h). 
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Mean streamwise velocities: 
 
Figure 2 shows the mean streamwise gas velocities for various 
sections along the step, it can be seen that there is generally a 
good agreement with the experimental findings. 
 
Figures 3-5 depict the mean streamwise velocity profiles of the 
three classes of particles that are considered in this study 
properties of which are tabulated in Table 1, an important 
parameter which characterizes the motion or the dispersion of 
the particulate phase in the presence of the carrier phase is the 
Stokes number (St=τp/ τf); and it is defined as the ratio of the 
particle relaxation time that of the appropriate fluid time scale. 
It is also interesting to note that the 70μm copper and the 
150μm glass particles share the same Stokes number.  
 
Particle relaxation time is calculated using the 
formula
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, where ρp and dp are the density and diameter 

of the particles respectively. As the reattachment length is not 
constant in this study, it has not been considered as an 
appropriate length scale to calculate fluid time scale, rather a 
constant length scale of five step heights, which is in 
accordance to the reattachment length is used. The resulting 
time scale is given by τf=5H/Uo. Another important parameter 
used to describe the flow of particles is the particle Reynolds 
number (Rep) which is given by 

μ

ρ pgpf duu − , where |up-ug| is the 

magnitude of the relative velocity. 
 
From the particle mean velocity graphs it can be inferred, that 
the particle streamwise velocity at the first station x/h=2 is 
lower than the corresponding gas velocities, this is in lines 
with the fully developed channel flow reaching the step. This 
has been described in the experiments of Kulick et al (1994), 
wherein the particles at the channel centerline have lower 
streamwise velocities than that of the fluid as a result of cross-
stream mixing. 

x 

y 
H 

h 

H=40mm   h=26.7mm 

x=35H 

Fig.1 Backward facing step geometry 

Fig 2. Mean streamwise gas velocity  
○ Experimental                  Numerical 
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However the gas velocity lags behind the particle velocities aft 
of the sudden expansion as the particles inertia makes them 
slower to respond to the adverse pressure gradient than the 
fluid. 
 
Mean streamwise fluctuations: 
 
Figure 6 shows the streamwise fluctuating velocity profiles of 
the gas phase, it can be seen that the numerical results are 
found to obey the same trend as the experimental results, 
however there seems to be a general under-prediction of 
numerical results in comparison to the experimental values. 
This under prediction is more pronounced towards the lower 
wall for a height of up to   y/H ≤ 2. 
 
Figures 7-9 shows the streamwise fluctuating particle 
velocities for the three different classes of particles considered, 
there is a general under-prediction for the streamwise 
fluctuating velocities for the 90μm glass particles but the 
results are found to be in accordance with the experimental 
findings. For the 70μm copper and 150μm glass particles 
which share the same Stokes number there has been a minor 
over-prediction until stations y/H ≤ 1. All the experimental 
results used for comparison of particle fluctuating velocities 
correspond to maximum mass loadings of particles as reported 
in the experiments of Fessler & Eaton (1997).  

○ Experimental                  Numerical  

Fig.3 Streamwise mean velocity for 90μm glass particles
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It can be also seen that for y/H > 1.5, the particle fluctuating 
velocities are considerably larger than those of the fluid. This 
again is in accordance with channel flow inlet conditions, 
where the particles have higher fluctuating velocities than 
those of the fluid owing to cross-stream mixing.  
 
Mean particle concentration: 
 
Particle number density (PND) results obtained from the 
numerical procedure are compared with the experimental 
findings of Fessler & Eaton (1999). The numerical results are 
obtained by normalizing by the maximum value and again by 
a non-dimensional number there by making it dimensionless.  

○ Experimental                  Numerical  

Fig.4 Streamwise mean velocity for 70μm copper particles 

○ Experimental                   Numerical  

Fig.6 Fluctuating streamwise gas velocities 

○ Experimental                  Numerical  
Fig.5 Streamwise mean velocity for 150μm glass particles
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○ Experimental                  Numerical 

 
 

Fig.7 Fluctuating streamwise particle velocities for 90μm glass particles ○ Experimental                  Numerical  
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Fig.10 Particle number density for 90μm glass particle 

○ Experimental                  Numerical 

 
 
 
It can be generally seen that from figures 10-12 that a fairly 
good agreement is seen for all the different classes of particles 
considered. However the numerical results predict fairly 
uniform number density for a region of y/H > 1, which is 
above the step and this phenomena is less pronounced with 
increasing distance along the step (x/h). 
 
It can be observed from the plots that clearly there are very 
few particles found in the re-circulation zone for y/h<1, this is 
not surprising because the Stokes number based on large-eddy 
time scale, are all larger than one (Fessler & Eaton, 1995), 
after this zone there is an increasing number of particles for 
y/H<1 until at x/h=15, where the number density across the 
section becomes fairly uniform.  
 
The key necessity of studying the distribution of the mean 
particle concentrations across the test section is attributed 
towards turbulence modification of the carrier phase; as the 
local particle concentration is known to have a strong effect on 
degree of turbulence modification. 
 

Fig.8 Fluctuating streamwise particle velocities for 70μm copper particles

○ Experimental                  Numerical 
Fig. 9 Fluctuating streamwise particle velocities for 150μm glass particles 

Fig.11 Particle number density for 70μm copper particles 
○ Experimental                  Numerical  



 

 Recirculation length characteristics: 
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This section shows the variation of reattachment point with the 
Stokes number and that of particle Reynolds number. In 
addition to the three classes of particles; extra two classes of 
glass particles of 25μm and 50μm diameter are considered. 
The main aim of investigating these additional particles is to 
study the preferential concentration behavior and also to 
increase the Stokes number range in the experiments of Fessler 
and Eaton (1999). However, their Stokes and particle Reynolds 
number have also been used to study the reattachment point in 
our current study. 
 
Figure 12 shows the plot of the reattachment length for the 
particulate phase against Stokes number it can be seen that 
there is generally a decrease in the reattachment length with 
the increase in Stokes number. It can also be seen that there is 
a sharp dip in the reattachment length for 25μm particle in 
close contrast to 50μm particle. 

Fig.13 Re-attachment point Vs particle Reynolds number  Figure 13 shows the plot of the reattachment length plotted 
against Particle Reynolds number (Rep). Reattachment length 
seems to decrease with the increase in the particle Reynolds 
number. 

 
The re-attachment point for the various class of particles have 
been plotted as a function of both Stokes number and particle 
Reynolds number, it is also seen that for particles with Stokes 
number less than one tend to disperse more within the carrier 
gas phase rather than for higher Stokes number.  
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