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ABSTRACT 
The waves in commercial cells for electrolytic aluminium 
production originate at the interface between the liquid 
aluminium and electrolyte, but their effect can spread into 
the surrounding busbar network as electric current 
perturbation, and the total magnetic field acquires a time 
dependent component. The presented model for the wave 
development accounts for the nonuniform electric current 
distribution at the cathode and the whole network of the 
surrounding busbars. The magnetic field is computed for 
the continuous current in the fluid zones, all busbars and 
the ferromagnetic construction elements. When the 
electric current and the associated magnetic field are 
computed according to the actual electrical circuit and 
updated for all times, the instability growth rate is 
significantly affected. The presented numerical model for 
the wave and electromagnetic interaction demonstrates 
how different physical coupling factors are affecting the 
wave development in the electrolysis cells. These small 
amplitude self-sustained interface oscillations are damped 
in the presence of intense turbulent viscosity created by 
the horizontal circulation velocity field. Additionally, the 
horizontal circulation vortices create a pressure gradient 
contributing to the deformation of the interface. 
Instructive examples for the 500 kA demonstration cell are 
presented. 

NOMENCLATURE 
A    wave amplitude 
B    magnetic field 
E    nondimensional electromagnetic interaction parameter 
f    electromagnetic force 
H    magnetic field intensity 
H=H1    typical depth (aluminium) 

/( )H H Lδ=  nondimensional depth 
I     total electric current 
J    electric current density 
L=Ly  characteristic length 
M     magnetization  
p pressure 
Re   Reynolds number 
u  velocity 
û  depth averaged  
ε     amplitude parameter 
δ     depth parameter 
ζ     nondimensional interface 
μ=Cf | û|    bottom friction coefficient 
ρ     density 
σ     electrical conductivity 
ν kinematic viscosity 

INTRODUCTION 
The interface stability problem for aluminium electrolysis 
cells is of great practical importance due to significant 
electrical energy losses, disruptions in the technology and 
increased environmental pollution rate. The electric 
current penetrating the electrolytic cells, together with the 
associated magnetic field, are intricately involved in the 
oscillation process at the interface between liquid 
aluminium and electrolyte. This interaction results in the 
observed wave frequencies being shifted from the purely 
hydrodynamic ones (Von Kaenel and Antille, 1996). The 
first attempts of the stability analysis date back to 70s 
(Urata 1976, Sele 1977). The multiple mode interaction 
was mathematically shown by Sneyd and Wang, 1994. 
Moreau and Evans, 1984, introduced the linear friction 
model for the wave motion and the horizontal circulation, 
and it was widely used afterwards in numerical studies. 
Actually, the linear friction is a simplification of the more 
general nonlinear bottom friction term appearing in the 
shallow water models, see for example Rastogi and Rodi 
1978. The systematic perturbation theory for the fluid 
dynamics and electric current problems, permitting to 
reduce the three-dimensional problem of the aluminium 
cell to a two-dimensional shallow layer problem was 
developed by Bojarevics and Romerio 1994. This work 
mathematically proved the wave oscillation frequency 
shift due to the magnetic interaction and the possibility of 
a resonant growth when two independent frequencies are 
moved to coincide. The wave model  has been extended 
to the weakly nonlinear case using the Boussinesq 
formulation including the linear dispersion terms 
(Bojarevics 1998). The intense turbulence generated by 
the horizontal circulation velocity is essential in order to 
explain the small amplitude self-sustained oscillations 
observed in real cells, known as ‘MHD noise’. A 
generalisation of the non-linear wave equations 
accounting for the turbulent horizontal circulation flow in 
the two fluid layers is just a first step. The second vital 
step for the fully coupled real cell problem requires the 
time dependent, extended electromagnetic field 
simulation including the fluid layers, the whole bus bar 
circuit and the ferromagnetic effects.  An instructive 
analysis of the results achieved with such a numerical 
model was started recently (Bojarevics and Pericleous, 
2006). The present paper extends the study to the cases of 
time dependent magnetic field effects, new  stable bus bar 
arrangement for the 500 kA cells, and the turbulent 
horizontal circulation coupling.  
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MODEL DESCRIPTION 

Shallow Water Approximation 
Electrolytic cells are arranged in series of long rows via a 
complex network of current-carrying bus bars. An 
example of the 500 kA cells modelled in the paper is 
shown in Figure 1. The liquid electrolyte  layer beneath 
the anode blocks is a relatively poor electrical conductor 
of a small depth (H2=0.04-0.05 m) if compared to its 
horizontal extension (Ly=3-4 m width, Lx=10-20 m 
length). The electrolyte density (ρ1 = 2100 kg/m3) is 
slightly less than the liquid aluminium (ρ2 = 2300 kg/m3) 
of the bottom layer of typical depth H1=15–30 cm. The 
“shallow water” approximation assumes that the 
horizontal dimensions  are much larger than the typical 
depth H for each of the layers and, in addition to this, the 
interface wave amplitude A is assumed to be small 
relative to the depth H. Therefore there are two small 
parameters of the problem: the nondimensional depth δ = 
H/L  and the amplitude ε = A/H. The more detailed 
derivation of the Boussinesq equations for the wave 
motion  and the coupled horizontal circulation velocities 
are given in previous publications (see Bojarevics and 
Pericleous, 2006 and the references therein). The 
resulting fluid dynamic equations become two-
dimensional after the depth averaging procedure is 
applied to the horizontal momentum equations. The 
equations for the combined horizontal velocity 
(horizontal circulation u0, plus ε-order wave motion) 
are 

εû
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where the continuity of the pressure  at the interface is 
satisfied by introducing the pressure 

0( )p H  at the 
common interface. The summation convention is assumed 
over the repeating indexes k (1 or 2, respectively for x, y 
coordinates). The horizontal coordinates are made 
nondimensional by the horizontal length scale L and, 
according to the small depth assumption, the 
nondimensional interface deformation of small amplitude 
is represented as 

 0 0 /( ) ( , , )H H L x y tδ ε ς= = .                 (3) 
The nondimensional variables are introduced using the 
following typical scales: the typical gravitational wave 
velocity is scaled as gHu =0

, gHL /  for time t,  

for pressure p,  for the electromagnetic force f 
( is typical magnetic field magnitude and I the total 
electric current), the relative density ρ = ρ

2
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nondimensional parameters are the Reynolds number Re 
and the electromagnetic interaction parameter E: 
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The effective turbulent viscosity νe(x,y,t) is computed 
according to the depth averaged versions of empirical 
turbulence models. For our simulations we used a version 
of k-ω two equation model previously validated for 
various recirculating MHD flows (Bojarevics et al. 2004). 

The nonlinear friction at the top and bottom of the fluid 
layers in (2) is defined similarly to general shallow water 
models (Rastogi and Rodi, 1978): 
 
 1 2 1ˆ ˆ ˆ ( )  j f j i o z e z ju C u H H u dzμ δ ∂ ν− − −= = − ∫u Re ∂ .(4) 

 
The equations of momentum (2) and the depth averaged 
continuity  
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for the two fluid layers can be combined into a single 
nonlinear wave equation for the interface ζ(x,y,t) by 
taking the time derivative of (4) and the horizontal 
divergence of (2). Then the difference between the 
resulting equations for the two layers permits to eliminate 
the common pressure at the interface )( 0Hp , yielding: 
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where F F F= −1 2  denotes difference of the respective 
variable in the two layers. The previous linear stability 
model (Bojarevics and Romerio, 1994) can be recovered 
from (6) by excluding the nonlinear and the dispersion 
terms. However, the nonlinear equation (6) extends the 
wave description to the weakly nonlinear case, where, for 
instance, a solitary wave with the electromagnetic 
interaction can be described. The horizontal circulation 
velocities, driven by the rotational part of the 
electromagnetic force, can be calculated by solving 
equation (2) in the two layers. The numerically efficient 
procedure consists of taking first the curl of the equation  
(2), then to rewrite it for the two dimensional horizontal 
flow stream function. The solution of the resulting 4th 
order equation for the stream function is sought in 
combination with the 2-equation turbulence model for the 
effective viscosity. 
 

 
Figure 1: The model busbar current distribution for 500 
kA cells in two potlines and the steel shell at the test cell.  
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MHD Computational Model 
The design of bus network for high amperage reduction 
cells requires optimizing the magnetic field within the cell 
and the electric current distribution both within the cell 
and the bus bars. Since the magnetohydrodynamic driving 
force is jxB, the electric current distribution, particularly 
the horizontal components, are equally important to the 
magnetic field optimization. Physical and engineering 
considerations suggest that both problems are mutually 
interconnected and should be solved interactively. It 
means that the computer program could use the same data 
input to compute the electric current, voltages, 
temperatures in the bus network, the magnetic field, the 
current distribution within the cell with waving metal 
interface, then finally iterate back to account for the 
spatially and temporally variable cell interpolar distance 
and the effect on the current distribution in the supplying 
bus network. This affects also the magnetic field, the 
metal pad waves, velocities, and the neighbour cells which 
are interconnected to the particular test cell (see Figure 1 
for the model representation of the 500 kA cells). 

Electric Current Distribution  
The electric current distribution is calculated by coupling 
the electric current in the fluid zone to the resistance 
network representing the elements of individual anodes 
and cathode collector bars, as well as the whole bus-bar 
circuit between two adjacent cells. The electric current in 
the fluid zones is computed from the continuous media 
equations governing the DC current (which can change in 
time with the waves and anode burnout process): 

 
,σ ϕ σ= − ∇ + ×j v B                           (7) 

 
where the fluid flow induced currents are accounted for 
only in the highly conducting liquid aluminium. The 
electric potential in the fluid is governed by the equation: 

 
                              (8) 2 (ϕ∇ =∇⋅ ×v B),

 
and the boundary conditions of zero current at the 
insulating walls, given current distribution ja at anodes, jc 
at cathode carbon.  ja and  jc are obtained from the linear 
element resistivity network solution, which in turn is 
coupled to the computed potential distribution from the 
equation (8). At the interface between the liquid metal and 
the electrolyte the continuity of the potential and the 
electric current normal component must be satisfied. Since 
the depths of the liquid layers are extremely small if 
compared to their horizontal extension, the shallow layer 
approximation is very efficient to solve this 3-dimensional 
problem. The solution, for instance in the aluminium 
layer, can be obtained from the following equation: 
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where the aluminium pad interface HAl (x,y,t) is variable, 
and the current distribution at the top and the bottom 
depend on the iterative solution from the linear element 
network of the bus bars, anodes, pins, collector bars, etc. 
(see Figure 1 showing the full network used in this paper). 
 

At the beginning of the computer simulation the MHD 
package generates automatically a very large set of 
Kirchhoff equations from the relatively simple unified 
data input. The current distribution in the bus bar network 
can be described to reasonable approximation accuracy by 
linear resistance elements. The electric currents and 
voltages in such a complex, multiply connected circuit are 
governed by the Kirchhoff laws. For the automatic circuit 
analysis purpose the ‘nodal’ analysis is more convenient 
than the ‘mesh’ analysis. The following equation set arises 
for the total number of M nodes each of which has N 
directly connected neighbour resistances: 
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where U  is the potential at a node, U  - for nodes at 
other ends of neighbour bars, R  - resistances of 
neighbour bars, 

m n

n
Im  - external current entering the node. 

In our case total current ‘I’ enters the reference nodes in 
the liquid of the upstream cell and ‘-I’ current leaves the 
nodes at the liquid metal of the downstream cell. For all 
other nodes the external current - right side of the equation 
- is zero. After finding the potentials at the nodes, the 
potential difference between two neighbour nodes 
multiplied by the connecting resistance gives the current 
in each resistance. A further improvement in accuracy is 
achieved by computing Joule heating  for each 
of the resistance elements.      Knowing the Joule heating, 
losses to the ambient air and the connectivity of the bars, 
it is possible to compute the temperature of a bar. When 
the temperatures are calculated, the new resistances are 
calculated, the electric circuit equation set is solved again 
to iterate the whole procedure while the convergence is 
achieved. The convergence is easily established for bars 
with physically reasonable cross sections and effective 
heat transfer to the ambient air and to the neighbour bars. 
The described procedure is sufficiently flexible to permit 
simulation of  anode changes, disconnected cathode bars, 
various branching of the current path between the cells, 
etc.  

R Im m  2

Magnetic Field Distribution  
Magnetic field in an aluminium cell is created by the 
currents in the cell itself and from the complex bus-bar 
arrangement around the cell, in the neighboring cells and 
the return line, and by the effect of cell construction steel 
magnetization. The complexity of any practically usable 
magnetohydrodynamic (MHD) model of the cell arises 
from the coupling of the various physical effects: fluid 
dynamics, electric current distribution, magnetic field and 
thermal field. The MHD model presented here accounts 
for the time dependent coupling of the current and 
magnetic fields with the bath-metal interface movement.     
The second step in the MHD model is to calculate the 
magnetic field B, which is necessary to determine the 
electromagnetic force distribution within the liquid zone, f 
= j x B.  The magnetic field B is the sum of two 
contributions: B = BBI + BM ; BIB  is generated by currents 
and BBM by ferromagnetic steel material.  The magnetic 
field BIB  from the currents in the full bus-bar network is 
recalculated at each time step during the dynamic 
simulation using the Biot-Savart law. A very similar 
technique is used on the 3D grid within the cell fluid 
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layers where a special analytical technique is applied to 
deal with the singularity in the Biot-Savart law in order to 
obtain a smooth and converging solution when the field 
calculation position coincides to the electric current. 
The calculation of the magnetic field BBM from steel 
requires much more effort.  The difficulty arises because 
the steel parts of the cell are made of ferromagnetic 
material whose magnetization M (H) depends non-
linearly on the local magnetic field intensity H in the 
magnetic material.  The local magnetic field (induction) B 
in the ferromagnetic material is orders of magnitude 
higher than in the non-magnetic material, like air, liquid 
aluminium, electrolyte etc.  Equation (11) gives the 
relationship between magnetic induction, magnetization 
and magnetic field intensity. 

    )( HMB 0 += μ                                  (11) 
where μ0 is the permeability of vacuum, equal to 4π x 10-7 
(H/m). In the magnetic material the unknown magnetic 
field intensity H is related to the magnetization M (H) by 
the material properties of a particular material (depending 
also on the temperature, carbon content in steel, previous 
magnetization). In order to find the unknown magnetic 
field intensity, we need to solve the integral equation: 
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where the magnetic field HI is given by the Biot-Savart 
law from all the external electric currents, the co-ordinate 
location r is for the field calculation position (observation 
point), the integration point position r’ is in the element 
volume dV’ running through all the ferromagnetic 
material in Vm.  The iterative solution procedure for the 
equation (12) calculates H for the elements, then uses M 
(H) material property to obtain the updated magnetization. 
The obvious complication is due to the singularity in (12) 
when the integration point coincides with the observation 
point.  This is a very important contribution to the solution 
and can not be simply discarded; instead the analytical 
singularity elimination is used to give smooth results. 
Once the magnetization of steel is known, the magnetic 
flux density B = μ0 H for the fluid zones is calculated 
from the equation (12). For the magnetic field 
computation, the busbar network is extended to include 6 
neighboring cells as shown in Figure 1.  The 
ferromagnetic parts are divided into approximately 30000 
nonlinear elements.  Figure 2 shows the magnetic field 
distribution in the steel potshell, from which the location 
of the major electric bus elements can be easily 
recognized. 
   

 
Figure 2: Magnetic field in the steel shell.  

TIME DEPENDENT SIMULATION RESULTS FOR 
500 KA CELL 
The MHD model uses a relatively coarse mesh of 
64x32x2 in each fluid layer in order to be able to re-
compute the electromagnetic and fluid dynamic fields 
time dependent distribution in a reasonable execution 
time.  Nevertheless, the solution is sufficiently smooth 
because of the global pseudo-spectral approximation used 
for the velocity and interface discretisation, which permits 
much higher accuracy in comparison to finite element or 
finite volume approximations on the similar grid size.  
The aluminium-electrolyte interface deformation makes 
the anode currents unequal because of the local ACD 
change.  The model includes an option to account for the 
time average gradual consumption of the anode bottom to 
conform to the ACD change.  An artificially accelerated 
anode burn-out is permitted in order to achieve the result 
in a reasonable computational time interval. The 
importance of this option was demonstrated in the recent 
study (Bojarevics and Pericleous, 2006) demonstrating a 
significant stabilization effect. It was activated for the 
following cases. 

 

 
Figure 3: Electric current in the liquid metal at initial 
stage and after the interface wave development. 

 

 
Figure 4: The liquid metal surface for the reduced ACD 
=0.035m at an initial time moment. 

 
Figure 5: The liquid metal surface for the reduced ACD 
=0.035m at t=100 s. 
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The solution for the coupled MHD problem of the 
electrolysis cell demonstrates strong correlation between 
different fields during the wave process development. The 
electric current in the aluminium layer develops rather 
significant horizontal components because of the varying 
electrolyte thickness. As seen from Figure 3, the 
horizontal current flow is affected by the interface waving. 
The two corresponding time moment interface shapes are 
presented in the Figures 4 and 5 respectively.  
The bus bar arrangement for the present study was further 
optimized in order to reduce the vertical magnetic field 
average value from about 9 Gs to 6 Gs, and to reduce the 
local Bz extremum magnitudes from about 32 Gs to 18 
Gs. Figure 6 shows the 3 dimensional view of the 
magnetic field distribution at the top of the liquid metal. 
The magnetic field is time dependent, and it oscillates 
very similarly to the interface oscillation pattern as clearly 
demonstrated in Figure 7. Remarkably the Fourier power 
spectra demonstrate that exactly the same frequency 
oscillation is excited for the magnetic field as for the 
liquid metal surface. Physically the source for these 
variations in the B field are the electric currents in the 
liquid metal and in the nearby bus bars.   
   

 
Figure 6: Magnetic field in the liquid metal. 
 

 
Figure 7: The oscillations (top) and the corresponding 
Fourier spectra (bottom) compared for the liquid metal 
surface and the magnetic field updated at all times. 
 
The above results are presented for a slightly reduced 
average ACD of 0.035 m instead of the target value of 
0.045 m, because a small oscillation is more visible in the 
former case. When the ACD is increased to 0.045 m, the 
cell becomes very stable when the magnetic field is 
updated at all times continuously. However, if we choose 
not to update the B field in time, and to keep it fixed as 
computed for the initial ‘stationary’ interface shape, then 
the cell becomes less stable with some oscillations as can 

be seen from Figure 8. The Fourier spectra peaks are also 
rather different. With the stationary B the interface 
oscillation exhibits one single peak, while the time 
dependent B gives significantly smaller amplitude peaks 
at 3 different frequencies. This indicates that the full time 
dependent model includes a physical parametric damping 
mechanism by the self adjusting magnetic field. It is worth 
to note that the B variation is just of an order of less than 1 
Gauss, but the parametric damping is clearly seen for the 
interface effect. The corresponding interface shapes are 
shown in Figures 9 and 10 for the same time moments. 

 
Figure 8: The liquid metal surface oscillations (top) and 
the corresponding Fourier spectra (bottom) compared 
when the magnetic field is either updated at all times or 
kept stationary as computed for the initial moment. 

 
Figure 9: The liquid metal surface for the ACD =0.045 m 
at t=100 s when the magnetic field B is updated 
continuously. 
 

 
Figure 10: The liquid metal surface for the ACD =0.045m 
at t=100 s when the magnetic field B is kept stationary. 
 
 
As noted previously, the horizontal circulation velocity 
distributions in the two layers have a profound effect on 
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the cell stability. The velocity patterns with the generated 
turbulent kinetic energy distributions are shown in Figures 
11 and 12. The differences in the vortex centre locations 
and their intensities are responsible for the additional 
pressure gradient along the interface, consequently 
changing the interface topology, as discussed previously 
(Bojarevics and Pericleous, 2006). In addition to this, 
there is a significant effect from the bottom friction 
coefficient on the intensity of the horizontal circulation 
and the wave intensity. The value of Cf = 0.45 
corresponds to the rough wall channel. This was used in 
most of the simulations. When changing this value to the 
smoother bottom situation, i.e., Cf = 0.045 (an order of 
magnitude less!), the cell becomes less stable, as can be 
seen from Figure 13. The horizontal circulation is also 
affected by the wave motion, and the oscillation can be 
felt in the turbulent horizontal velocities. This creates a 
modulation effect of the interface oscillations, as seen 
from Figure 13 when comparing the oscillations for the 
case with artificially made stationary horizontal 
circulation after the initial transient of 100 s. 
 

 
Figure 11: The horizontal velocity and the turbulent 
kinetic energy distribution in the liquid electrolyte. 

 
Figure 12: The horizontal velocity and the turbulent 
kinetic energy distribution in the liquid metal, t=100 s. 

 
Figure 13: The oscillations (top) and the corresponding 
Fourier spectra (bottom) compared for different bottom 
friction coefficient values and the case when the 
horizontal circulation is kept stationary after initial 100 s. 

 
Figure 14: The liquid metal surface oscillations compared 
for the two bus arrangements. 

Finally, we would like to note that the newly modified 
version of the 500 kA bus arrangement is significantly 
more stable than the one previously considered, as 
demonstrated in Figure 14. The previous bus design led to 
a stable cell only for the ACD increased to 0.055 m, 
whereas the new one is stable for 0.045 m  ACD.  

CONCLUSION 
The user friendly MHD numerical programme package 
simulates the real cell behaviour including the full 
coupling between the hydrodynamic and electrodynamic 
fields at all times. The inclusion of various design 
elements and physical factors are of importance for 
predicting the cell response to operation practice and the 
particular cell parameters.  
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