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ABSTRACT 

Mesh free methods can be grouped into two approaches. 
One is based on field approximations such as moving least 
square approximations and radial basis functions (RBF) 
and the other is based on kernel approximations such as 
smoothed particle hydrodynamics (SPH). This paper 
presents a unified approach to implement the RBF and 
SPH methods for solving partial differential equations in 
general and for solving problems in computational fluid 
dynamics in particular. 

There are many forms of RBF and SPH. This paper 
restricts attention to multiquadric RBF’s and a particular 
SPH that satisfies certain completeness and reproducing 
conditions. Completeness and reproducing conditions 
enables SPH to incorporate boundary conditions in similar 
fashions to mesh based methods such as finite element. A 
number of numerical examples are presented to 
demonstrate the effectiveness of the two mesh free 
methods. Some remarks with respect to their 
computational efficiencies and implementation are also 
discussed. 

NOMENCLATURE 
g  gravity 
p pressure 
T temperature 
v  velocity 
α thermal diffusivity 
β coefficient of thermal expansion 
ρ density 
ν kinematic viscosity 
 
 

INTRODUCTION 
Mesh free methods have attracted much attention recently. 
Two distinct directions are followed by these methods. 
One is based on field approximations such as radial basis 
functions (RBF), element free Galerkin and moving least 
square approximations. The other is based on kernel 
approximations such as smoothed particle hydrodynamics 
(SPH). The kernel approximations used in the original 
SPH proposed by Lucy (1977) and Gingold and 
Monaghan (1977) suffer from certain inconsistencies. 
Various approaches to remedy these inaccuracies have 
been reported in the literature. It has been shown that the 
kernel approximations can be corrected so that they 
reproduce linear functions exactly (see, for example, 
Belytschko et al. (1966). Other workers, such as Johnson 
and Beissel (1966), Randles and Libersky (1996), and 
Krongauz and Belytschko (1998), developed corrected 

derivative methods. Essentially, these methods replace the 
standard SPH approximant with more sophisticated 
interpolant that was constructed by imposing certain 
consistency conditions. Liu et al. (1995) showed that the 
reproducing kernel provides boundary correction as well 
as removing the tensile instability. Chen and Beraun 
(2000), on the other hand, developed a generalised SPH 
method (GSPH) by applying the kernel estimate into the 
Taylor series expansion. Their formulation extends not 
only the ability of standard SPH to model partial 
differential equations with higher order derivatives but to 
enforce boundary conditions directly as well.   
      The dependence of SPH kernel on the smoothing 
length introduces additional complexities into the 
application of adaptive mesh refinement techniques to 
SPH.  It is thus of interest to explore other mesh free 
methods that do not have such complexity. In the last 
decade or so, another group of mesh free methods that is 
based on the function approximation by RBFs either 
globally or compactly supported was developed to solve 
partial differential equations (see, for example, Kansa, 
1990). RBF interpolation is required to be exact at the 
nodes, so one drawback of these methods is the need to 
solve the full coefficient matrix arising from the function 
approximation. A common approach to improve 
computational efficiency is to ensure sparsity, either by 
using functions of compact support, or by using domain 
decomposition (see, for example, Dubal, 1994). In this 
paper, we applied the approach of SPH to RBF in using 
the nearest neighbours of a particle/node for estimating its 
derivatives. Thus, computer programs implementing the 
SPH and RBF methods can share the same structure. They 
differ only in their different estimates of the derivatives. 
The aim of this paper is to present the results of such 
implementation of RBF, and to compare them to GSPH. 
Most applications of standard SPH are to simulate 
compressible fluids. The second aim is to study the 
application of GSPH and RBF to some benchmark 
incompressible fluid problems for testing CFD codes. 
Also unlike standard SPH discretisation, all the numerical 
examples are obtained from substituting each term of the 
governing equations by their corresponding RBF or GSPH 
derivative approximations directly.  Finally, the simplicity 
of implementing adaptive refinement and variable 
resolution to RBF are briefly examined. 

GENERALISED SPH 
Applying the kernel approximation to the Taylor series 
expansion for f(x) in the neighbourhood of x, Chen and 
Beraun (2000) derived results that improve the 
approximation accuracy of SPH. In 1D, the GSPH 
approximation of a function f(x) and its first two 
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derivatives are given in Equations (1) - (3). Higher order 
derivatives can easily be derived.  
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    The same procedure can be followed to derive 
approximations for functions in higher dimensions. 
However, the derivative estimates for higher dimensions 
involve matrix inversion. It is clear that GSPH is 
computationally more expensive to use than conventional 
SPH. The extra terms in the above approximations can be 
interpreted as corrections to the boundary deficiency in 
the conventional SPH. The results are equivalent to some 
of the results of Liu et al. (1995) and Krongauz and 
Belytschko (1998) obtained from imposing certain 
completeness and consistency conditions. The above 
approximations are algebraically correct for a function if it 
is constant, for its first derivative if it is constant or linear, 
and for its second derivative if it is constant, linear or 
quadratic. 
    It is well appreciated that SPH is closely related to the 
finite element method. The main difference between the 
two methods is that the SPH kernel approximation of a 
function does not satisfy the Kronecker delta property. It 
is thus not possible to impose essential boundary 
conditions in conventional SPH. The inclusion of f(x) and 
df/dx in the above first and second derivative estimates 
enable the direct insertion of Dirichlet and Neumann 
boundary conditions, if they exist, in the GSPH method. 
 

RADIAL BASIS FUNCTION 

The development of RBFs into a mesh free method for 
solving partial differential equations arises from the 
recognition that a radial basis function interpolant can be 
smooth and accurate on any set of nodes in any 
dimension. The starting point is that the approximation of 
a function f(x) for a set of distinct points Ν,= L,1,iix can 
be written as a linear combination of N RBFs.  

||)−(||= ∑
=

ii

N

i

xxf φα
1

)(x                (4) 

where ||)−(|| ixxφ  denotes a positive definite RBF. The 
unknown coefficients iα  are to be determined from the 
system of equations formed by Ν,= L,1),( jf jx . Once 
they are determined, the m-th spatial derivatives of f(x) are 
approximated by taking the m-th spatial derivatives of the 
RBFs. 
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The application of Equations (4) and (5) provides the 
framework for the numerical solution of partial 
differential equations and their boundary conditions. 
     There are many RBFs either globally or compactly 
supported. An example of a globally supported RBF that 
is used extensively is multiquadric (MQ): 

22 crr +=)(φ , where |||| ir xx −=  and c > 0. In this 

paper, a general MQ is used. It is well 
known that the shape parameters q and c strongly 
influence the accuracy of MQ approximation. An 
important unsolved problem is to find a method to 
determine the optimal value of q and c. Following the 
work of Liu, et al. (2005), initial nodal spacing is used for 
the value of c and 1.03 is used for the value of q in the 
numerical examples presented in this paper. To improve 
boundary treatment, methods using MQ usually have a 
polynomial of zero degree added to the right hand side of 
Equation 

( q
crr 22 +=)(φ )

4. 
    In this paper, the approach of SPH is applied to RBF in 
that only neighbouring particles/nodes within a given 
radial distance from the particle/node of interest are used 
in estimating its derivatives. The term smoothing length as 
applied in SPH is used to describe the size of this support 
region.  In the RBF case, the smoothing length is equal to 
initial nodal spacing. This has the advantage of avoiding 
the inversion of large coefficient matrix making problems 
requiring large number of nodes more amenable to 
numerical solution. In general, the larger the supporting 
region the higher is the accuracy of the approximation. 
The need to invert coefficient matrix makes the method 
more expensive than the generalised SPH. 
 

NUMERICAL EXAMPLES 

First, the GSPH and RBF approximations of ∂u/∂x of the 
function u(x, y) = sin(x) cos(y2) are studied. Figure 1 
compares the errors of GSPH with those of RBF using 
supporting regions of 2h and 3h, where h denotes the 
smoothing length. It shows that 3h is a good value to use 
for the RBF supporting region. For these functional 
evaluations, the RBF method gives better accuracy than 
the generalised SPH at the expense of more computational 
effort. 
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Figure 1:  Errors for estimating ∂u/∂x using GSPH and 
RBF. 

2  



 
 

Heat Conduction 

To demonstrate that the GSPH method can impose 
boundary conditions directly, the following heat 
conduction problem is solved in the domain 0 ≤ x ≤ 1, 0 
≤ y ≤ 1, initial condition T(x,y,0) = -1, Neumann boundary 
condition ∂T(x,1,t)/∂y = 0 at y = 1 and Dirichlet condition 
at the other boundaries T(0,y,t) = T(1,y,t) = T(x,0,t) = 1. 
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where T denotes temperature and t time. Both RBF and 
GSPH give the result shown in Figure 2 and appear 
identical to the result obtained by Jeong et al. (2003) who 
implement the boundary conditions to the conventional 
SPH in a different way. 
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Figure 2:  Temperature profiles at t=0.08. 

 

Burger Equation 

Here, the following 3D Burger’s equation is solved using 
GSPH and RBF and the numerical results are compared 
with the analytical solution.  

 
02 =∇−∇⋅+

∂
∂ vvvv ν

t
                  (7) 

Figure 3 shows the computed results for ν = 0.25 and ν = 
0.05 at various times. The solution becomes more shock-
like as the viscosity parameter decreases. Figure 4 
compares L1-norm errors for GSPH and RBF for ν = 
0.05. The number of particles used is 41×41×41. Both 
methods give similar results. 
 

Incompressible Navier-Stokes Equation 

The GSPH and RBF methods are applied to three standard 
CFD test problems – 2D Poiseuille flow, 2D lid-driven 
cavity and natural convection in a square cavity. For the 
2D Poiseuille flow and lid-driven cavity examples, the 
following Navier Stokes equation in 2D is solved 

Fvpvv
t
v

+∇+∇
1

−=∇⋅+
∂
∂ 2ν

ρ
               (8) 

For the Poiseuille flow, the boundary conditions are v = 
(0,0) on y = 0 and y = L, where L = 0.001 and F = 
1.25x10-6/Re. For the lid-driven cavity problem, the 

boundary conditions are v = (-1,0) on y=1 and v = (0,0) on 
the other three sides of the unit square. 
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Figure 3:  GSPH solution (+) of 3D Burger’s equation 
compared to analytical solution (solid line) along the line 
x = y = z at various times for viscosities of 0.25 and 0.05. 
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Figure 4:  L1-norm errors for solving 3D Burger’s 
equation. 
 
    For an incompressible fluid, the Navier Stokes equation 
is complemented by the incompressibility constraint, ∇⋅v 
= 0. In general, velocity  at time  obtained by 
solving Equation (8) does not satisfy the incompressibility 
constraint. This constraint on velocity must be satisfied at 
all times. In this paper, the following steps are iterated 
until 

1+nv 1+nt

0≈⋅∇ v  is reached.  

1.  1+⋅∇−=Δ n
kkp vγ

2.  )(1 n
k

n
k pt Δ∇Δ=Δ +v
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Here, k is the iteration counter and . Upon 
convergence, the above procedure gives the new pressure 

 and divergent free velocity  for time . The 
parameter γ controls the rate of convergence and must 
satisfy the stability requirements . The 
iteration is equivalent to solving a Poisson equation for the 
pressure. 

kkk fff −=Δ 1+

1+np 1+nv 1+nt

tx ΔΔ≤≤ 4/)(0 2γ

 

2D Poiseuille Flow 

Figure 5 shows the GSPH solutions of 2D Poiseuille flow 
on a  grid for Re = 0.0125, 5, 10 and 100 compare 
well with the analytical solutions.  Similar RBF results are 
obtained. Sigalotti, et al. (2003) reported that their SPH 
solution for Re = 5 eventually becomes unstable after 
about 280 s.  For the four cases considered here, the 
GSPH and RBF solutions do not exhibit any instability up 
to twice the time when the steady state solution is reached. 
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Figure 5:  GSPH results (+) of Poiseuille flow compared 
to series solutions (solid lines) for Re = 0.0125, 5, 10 and 
100. 

2D Lid-Driven Cavity 

Figure 6 shows that the GSPH solutions for Re = 1000 on 
a 129×129 grid using 3 different kernels compare well 
with the benchmark solutions 1, 2 and 3 of Ghia et al. 
(1982), Botella and Peyret (1998) and Erturk et al. (2005) 
respectively. In the figure, W3 denotes the cubic spline 
kernel of Monaghan (1992), W4 the quartic spline kernel 
of Liu et al (2003) and W5 the quintic spline kernel of 
Morris et al. (1997). For this problem, W4 gives the best 
result with W3 and W5 giving similar results.  Figure 7 
shows the RBF result is similar to the GSPH result using 
kernel W4 for Re = 1000. 
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Figure 6:  Comparison between published results and 
GSPH solutions for Re = 1000 of the lid-driven cavity 
problem using different kernels. 
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Figure 7:  RBF results of lid-driven cavity problem 
compared to GSPH and published results for Re = 1000. 
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Natural Convection in a Differentially Heated Cavity 

For incompressible fluid flow in a differentially heated 
square cavity of side L, the following equations are solved 
 

gvvvv )( rTTp
t

−=∇−∇
1

+∇⋅+
∂
∂ 2 βν

ρ
          (9) 

TT
t
T 2∇=∇⋅+

∂
∂ αv                         (10) 

The initial conditions are v(x, y, 0) = (0, 0) 
and . The boundary conditions are v = (0, 0) 
on cavity boundary, , 

rTyxT =)0,,(

hTtyT =),,0( cTtyLT =),,( , 
∂T(x,0,t)/∂y = ∂T(x,L,t)/∂y = 0. Here, , and denote 
the reference, hot and cold wall temperatures respectively. 
Table 

rT hT cT

1 shows that the GSPH and RBF (enclosed by <>) 
results compare well with the benchmark solutions for 
Prandtl number 0.71 and Rayleigh numbers 104 - 106. In 
the table, the numbers enclosed by [] and () are the results 
of Leal et al. (1999) and de Vahl Davis (1983) 
respectively.  Using a remeshed SPH approach, Chaniotis, 
et al. (2002) obtained the values of umax = 17.31 at y = 
0.823 and vmax = 20.05 at x = 0.112 for Ra = 104 which are 
not as close to the  results of Leal et al. and de Vahl Davis 
as the GSPH and RBF results. 

 
 umax y vmax x 
 [16.18] [0.823] [19.63] [0.119] 

Ra =  410 16.18 
<16.08> 

0.822 
<0.827> 

19.63 
<20.05> 

0.119 
<0.113> 

 (16.178) (0.823) (19.617) (0.119) 
 [34.74] [0.855] [68.62] [0.066] 

Ra =  510 34.76 
<33.46> 

0.853 
<0.857> 

68.64 
<68.40> 

0.0656 
<0.0622>

 (34.73) (0.855) (68.59) (0.066) 
 [64.83] [0.850] [220.6] [0.0379] 

Ra =  610     64.91 
<64.30> 

0.847 
<0.851> 

220.72 
<218.40> 

0.0375 
<0.0355>

 (64.63) (0.850) (219.36) (0.0379) 

Table 1:  Comparison of natural convection results. 

Adaptive Refinement and Variable Resolution 
One common approach to improve computational 
efficiency is to use small node spacing in region of large 
gradient but large node spacing in smooth region.  It is 
relatively simple to apply these approaches to RBF as 
there is no dependence on smoothing length. For SPH, 
extra terms are required in the gradient approximation 
when : )(rhh ≡

)())(,( 1 rh
h

Wu
u

WrhuW rur ∇
∂

∂
+

∂
∂

=∇             (11) 

The second term on the right, known as term, is 
usually neglected in SPH. It is not in general known how 
much error is involved in ignoring this term.  It could be 
significant especially in region where the variation of h 
with space is large.   

h∇

    Figure 8 shows the application of adaptive refinement 
to the 1D Burger’s equation. The spacing between nodes 
is evolved with time to adapt to changes in the solution. 
The node spacing is halved when the second derivative is 
greater than 20. 
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Burger’s equation at various times for viscosity 0.003 
compared to analytical solutions (solid line).  The top 
graph shows the positions of grid points at various times. 
 
    Next, non-uniform nodal spacing according to the 
following equation is used to solve the lid-driven cavity 
problem for Re = 1000 using RBF. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝
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⎟⎟
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⎝

⎛
−

−
+−= ππ

)1(2
1

4
cos21

2
1

n
ixi               (12) 

Figure 9 shows the RBF results using non-uniform nodal 
spacing are now much closer to the published results than 
the RBF results using uniform nodal spacing shown in 
Figure 7. 

CONCLUSIONS 

This paper presents a unified approach to implement the 
RBF and SPH methods for numerical computations. The 
approach of SPH in using the nearest neighbours within 
the supporting region of a particle to estimate its 
derivatives of a function is applied to RBF. The size of 
supporting region depends on the smoothing kernel used 
in the case of SPH but is a parameter in the case of RBF. 
In the numerical examples considered in this paper, a 
supporting region of width 3h, q = 1.03 and nodal spacing 
for c are used for RBF. 

The numerical examples presented in the last section 
demonstrated that GSPH and RBF give accurate results to 
the problems considered. Unlike conventional SPH, they 
have the advantage of being able to impose boundary 
conditions directly. Also, they are just as easy to 
implement as the conventional SPH. There is no 
dimensional difference between 1D, 2D and 3D as far as 
computer coding for their implementation is concerned. 
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Apart from correcting the boundary deficiency problem, 
GSPH is less affected by particle disorder than 
conventional SPH because of the normalisation term in the 
denominator (refer to Equations 1-3). 
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Figure 9:  Variable resolution RBF results of lid-driven 
cavity problem for Re = 1000 compared to published 
solutions. 
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