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ABSTRACT 
A time consuming part of any discrete element method 
(DEM) simulation is the calculation of the forces. In 
conventional DEM, all particles are integrated with the 
same small time-step, which is due to the fact that 
somewhere in the system there are almost always 2 
particles in contact. In a recent article, the cluster 
integration method (CIM) was introduced for spherical 
granular particles (Melheim, Computer Physics 
Communications 171 (2005) 155-161). Here we extend 
the method to non-spherical particles. We use a cell list to 
construct a Verlet neighbor list, in which also wall 
segments are included. From the neighbor list we 
assemble clusters of close particles. A particle can only be 
part of one cluster. The clusters are integrated separately 
during a period of time determined from the validity of the 
neighbor list, using a Runge-Kutta method with error 
control. During the integration of a cluster, we go through 
the neighbor lists of all particles in the cluster and 
calculate the forces. The basic idea is to use as long time-
steps as possible for the various clusters, hence keep 
expensive force calculations to a minimum. After the 
global time-step, the clusters are rebuilt. The cluster 
integration method is ideal for dilute or mixed 
dilute/dense systems of stiff particles, e.g. as found in 
fluidized beds. DEM has problems for realistic values of 
the stiffness of the particles, giving small contact times, 
leading many researchers to use artificially soft particles, 
but with CIM realistic values can be used while still 
having acceptable CPU time. Here we use a simple 
example, a dilute system of elastic spherocylinders in 
vacuum, using energy conservation for validating that the 
integration is correct, demonstrating that CIM is more 
advantageous compared to DEM the stiffer the particles 
are. 

NOMENCLATURE 
A rotation matrix 
I moment of inertia 
l length of spherocylinder shaft 
N torque 
n normal vector 
q  quaternion 
R center of mass 
r spherocylinder “radius” 
u axis vector 
v velocity 
 
Δ buffer 

nδ  overlap 

ρ arm 
ρ density 
ω angular velocity 

INTRODUCTION 
    The discrete element method (DEM) is a powerful tool 
for investigating the behavior of macroscopic particles. In 
a DEM simulation, each particle is tracked as it moves, 
rotates and interacts with other particles. In a real granular 
system, the forces are generated by small deformations of 
the particles at the contact points. In a soft particle 
simulation, the particles are allowed to overlap slightly 
instead of deforming. The overlap distance is assumed to 
correspond to the sum of the deformations of the 
contacting particles. 
    Previously, most soft particle simulations in 3D have 
used round particles. The round shape is very easy to 
simulate. Then the moment of inertia tensor is constant 
also in the laboratory frame, which is a great 
simplification so the orientations of the particles need not 
to be calculated. Even more important is the fact that for 
spherical particles the overlap computation is simple. For 
a sphere, every point on its surface can be determined by 
knowing the position of the center and the radius of the 
particle; in particular, there is no dependence of the 
orientation of the particle. As a result, the overlap of two 
particles in contact is just the sum of the radii of the 
particles subtracted by the distance between the center of 
the spheres. 
    For dilute systems where binary encounters dominate, 
the dynamics of spherical particles can be calculated very 
efficiently by using event driven simulation and hard 
sphere collisions or generalizations of Enskog-DSMC to 
granular particles (Frezzotti 2000). In the hard sphere 
model the particles are assumed to interact through binary, 
quasi-instantaneous collisions where contact occurs at a 
point. The interaction forces are impulsive and therefore 
all other finite forces are negligible during the collision; 
hence linear momentum and angular momentum are 
conserved in the collision. Together with constitutive 
relations for inelasticity of the particles, the velocities and 
angular velocities after collisions can be given directly by 
algebraic relations, without solving differential equations. 
    However, the use of spherical particles has several 
limitations. Non-spherical particle shapes can create a big 
difference in the mechanical behavior of static systems 
because non-spherical particles do not roll easily. For 
example, bulk material composed of round particles has 
angles of repose that are much smaller than natural 
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materials. For spherical particles, particle rolling can 
dominate as a deformation mechanism, resulting in very 
low resistance to applied shear. For less rounded particles, 
more interlocking occurs, inhibiting the rolling tendency. 
    The hard sphere collision rules for non-spherical 
particles are very complex, if at all known, and usually it 
is not possible to find analytical expressions for the time 
to collision for a given particle pair. Hence, for non-
spherical particles, it is in general not possible to use event 
driven simulation even for dilute systems and DEM is the 
only alternative. If a realistic value for the stiffness of the 
particles is used (i.e. high value for the normal spring), 
DEM is very inefficient. For a dilute system of non-
spherical particles it is probably a good approximation to 
use artificially soft particles since the contact time is much 
smaller than the average time between collisions, but for 
flows with mixed dilute and dense regions, like in a 
fluidized bed, using artificially soft particles can not be 
justified. 

CLUSTER INTEGRATION METHOD 
    The basic idea of the cluster integration method (CIM) 
of Melheim (2005) is to reduce the number of time-
consuming force evaluations by using a time-step that is 
as large as possible. In conventional DEM, all particles are 
integrated with the same small time-step, which is 
determined by the fact that somewhere in the system there 
is almost always 2 particles in contact. In CIM, the 
particles are divided in clusters that do not interact over a 
given period of time. A particle can only be part of one 
cluster. The clusters are integrated independently using an 
embedded Runge-Kutta method with variable time-step, 
with the largest time-step possible for the desired 
accuracy. For a given maximum error, the largest allowed 
time-step for integration of the particles varies over 
several orders of magnitude, depending on the forces 
acting on the particles. 
    The cluster list is generated from a Verlet neighbor list 
(Allen 1987), which is typically generated from a cell list. 
The computational domain is divided into cells of equal 
size, where the length of the cell-sides must be equal or 
larger than the largest linear extent of a particle plus a 
buffer Δ. We assume here that the center of mass of the 
particle is located midway on the line measuring the 
largest linear extent of the particle. For each cell, a list of 
the particles with centroid inside the given cell is 
constructed. For each particle i, we compute the distance 
to all other particles in the same cell, and to all particles in 
the 26 neighboring cells. All neighbors in contact or with 
minimum distance between the surfaces less than Δ are 
added to the neighbor list of particle i, and only those 
neighbors are checked in force calculations for the next 
time-steps. The fact that the list contains pairs of particles 
that are close but not in contact, ensures that we also 
check pairs that may come in contact. Wall segments are 
also added to the neighbor lists for each particle, for 
example with a negative wall index to differentiate 
between wall and particle neighbors. In this 
implementation of the neighbor list the pairs are stored 
twice. When calculating the interparticle forces, we only 
check for contact for particle indices i>j, and use 
Newton's third law. The reason for the double book-
keeping is that then a fast and simple recursive algorithm 
to find the clusters can be used, as described by Melheim 
(2005). Each cluster contains particles that are more than 

Δ away from particles in other clusters and hence the 
particles in a cluster can be integrated independently of 
the other clusters for as long as the neighbor list is valid. 
    In DEM it is usual to accumulate the change in position 
for all the particles and generate a new neighbor list when 
one of the particles has moved more than Δ/2. This is not 
possible with CIM, since the clusters are integrated one 
after the other for a pre-determined period of time, which 
can be thought of as the lifetime of the cluster list. Hence 
it is necessary to estimate the lifetime when the clusters 
are generated, using the velocity, and for non-spherical 
particles also the angular velocity, of the particles. The 
procedure for doing this depends on the particle shape. 

SPHEROCYLINDERS 
The cluster integration method can be used for any non-
spherical shape. In this paper we will consider 
spherocylinders since then the contact detection is fast and 
simple (Vega 1994). Spherocylinders can vary from 
spheres to rod-like particles, depending on their aspect 
ratios, see Fig. 1. 

 
Figure 1: Two spherocylinders with center of mass  
and 

iR

jR , "radius"  and ir jr , and axis vector  and iu ju . 
The shafts are the straight lines inside the objects, with 
lengths  and il jl . 
 
For spherocylinders, finding the overlap nδ  of two 
particles is equivalent to finding the closest distance ijδ  
between the shafts of the spherocylinders, and 

n i j ijr rδ δ= + − . The contact detection algorithm for 
spherocylinders is given in Fig. 2.  
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Figure 2: Algorithm for calculating the square of the 
shortest distance between the shafts of two 
spherocylinders. 
 
The Vega contact detection algorithm has been used to 
study packing and segregation of a granular material 
composed of spherocylinders. Abreu et al. (2003) used 
Monte Carlo simulation to generate stationary 
configurations whereas Pournin et al. (2005) used 
conventional DEM. 
    If we neglect the deformation at the contact point, the 
lever arms are 
  *

i i i irλ= +ρ u n
  *

j j j jrλ= −ρ u n
where 
 
 ( )* * /ij j j i i ijλ λ= + −n R u u R  

 
A plane wall is parameterized by the normal vector  
pointing out of the wall and into the domain and a single 
point  belonging to the wall. The contact force from a 
plane wall acts only on one of the hemispheres. The 
criterion for contact is 

wn
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The resulting overlap is n ir dδ = −  and the lever arm is 

. / 2i i i il r= ± −ρ u nw

    The body-fixed system is chosen such that the axis 
vector u of the spherocylinder points in the direction of 
the local  unit vector. The principal moment of inertia 
along the axis for a spherocylinder with constant density ρ 

is given by 

3e$

4
3

8
2 15

I r lπ 5rρ πρ= + . This is just the sum of 

the moment of inertia for a sphere and the moment of 
inertia for a cylinder, around the axis of the cylinder. 
From the definition, we see that 
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Alternatively, we could get the same answer by using the 
fact that the center of mass for a hemisphere is displaced 

 along the symmetry axis, from the center of the 
corresponding sphere, and using the parallel axis theorem 
(Goldstein 1980) twice. 

3 /8r

    For spherocylinders, it is easy to find the lifetime of the 
clusters. The maximum velocity along the shaft of a 
spherocylinder occurs at the ends, i.e. at the hemisphere 
centers. The cluster lifetime is then given by 

( )0.5 / max / 2cm lΔ ±v ω u× . 
 

TEST SIMULATIONS 
    For dense systems, all particles are in a few clusters and 
the CPU time of CIM is comparable to conventional DEM 

with a Verlet neighbor list. The advantage of CIM over 
DEM is evident for dilute systems, or systems with mixed 
dilute and dense regions, and particularly for stiff 
particles. To show this more quantitatively, it is important 
that we compare CIM and DEM simulations that integrate 
the particles with the same accuracy. The type particle 
interaction is immaterial when comparing the speed of 
DEM and CIM, since only the contact time matters. A 
convenient way of measuring the accuracy of particle 
simulations is to turn off all dissipation and check for 
energy conservation. Alternatively we could have 
considered the inelastic collision of two particles and 
compared with an "exact" solution calculated with very 
small time step, but we use the energy conservation 
method since we then get a comparison of the relative 
speed of DEM and CIM simultaneously. 
    For simplicity, we consider a dilute system of elastic 
spherocylinders in zero-gravity vacuum, with periodic 
boundary conditions. In a real-life application, it is the 
simulation of the particle-particle interactions in the bulk 
material that consumes most of the simulation time, and 
with the periodic boundary conditions, our simulation 
mimics a small homogenous region in the bulk. The only 
force acting between two particles in contact is a repulsive 
spring with spring constant . The simulation is 
conducted in a cubical box with sides 5cm, filled with 746 
particles with shaft 4mm and "radius" 1mm (i.e. aspect 
ratio 3). This gives a volume fraction of 0.1. The density 
of the particles is 2700kg/m³. The initial configuration is 
created by "equilibrating" the system; the particles are 
integrated until equipartition between the rotational and 
the translational degrees of freedom is achieved, while 
scaling the kinetic energy to the desired value. We set the 
initial rotational velocity along the shaft of the particles to 
zero, and since there is no tangential force that can impart 
rotation around the shaft axis, this freedom is "frozen", 
and there are effectively 2 rotational degrees of freedom 
and 3 translational. 

nk

    The average kinetic energy of a particle is set to 
66.13 10−⋅ J in all simulations, corresponding to an 

average particle speed of 0.4m/s, assuming equipartition 
between the translational and rotational degrees of 
freedom. The same buffer Δ=0.6mm is used for the 
neighbor list in the CIM and DEM simulations. For the 
DEM simulation the classical Runge-Kutta of order 4 
(RK4), whereas for the CIM simulation the adaptive time 
step Runge-Kutta-Fehlberg is used with relative tolerance 

510−  and absolute tolerance . When the forces are 
large, it turns out that the adaptive integrator gives more 
restrictive time steps than necessary for keeping the 
energy constant, and this reduces the computational speed. 
Hence we specify a minimum time-step  allowed for 
the RK-Fehlberg method. In the test simulations, for a 
given , the constant DEM time-step 

2010−

mindt

nk 4RKdt  and the 
minimum time-step  for RK-Fehlberg are tuned so 
that the energy is conserved with less than 0.1% error after 
0.1s of physical time. The computations have been carried 
out on a PC with an AMD Athlon 2.0GHz processor. The 
speed-up of CIM relative to DEM for the case of no 
dissipation is shown in Table 1. With dissipation, i.e. a 
linear dashpot, the speed-up will be a little less, since the 
dampening leads to somewhat longer contact times. 

mindt
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Table 1: Simulation times for DEM and CIM. 
 
    For the dilute system considered, the CPU time for CIM 
does not increase much when the stiffness of the 
spherocylinders increase, whereas for DEM the constant 
time step must be decreased to ensure energy conservation 
during contacts, increasing the number of force 
evaluations and hence the CPU time. For very stiff elastic 
spherocylinders, e.g. steel particles, CIM is an order of 
magnitude faster than DEM for dilute systems of non-
spherical particles. We also see that the minimum time-
step allowed for RK-Fehlberg is smaller than the 
corresponding constant time step for RK4. This makes 
sense since the adaptive integrator tries to distribute the 
error in time by taking longer time steps when the forces 
are small, whereas the constant time step RK4 is very 
accurate for small forces and hence can use a little longer 
time step than RK-Fehlberg when the forces are large. 
 

CONCLUSION 
In conclusion, the described CIM algorithm makes it 
possible to simulate the dynamical behavior of non-
spherical granular particles in dilute systems with realistic 
values for the stiffness of the particles, much faster than 
with conventional DEM. For dense systems CIM and 
DEM give almost equal simulation time, since then all 
particles are in a few clusters, and both CIM and DEM 
essentially use a Verlet neighbor list for optimization. It is 
expected that CIM will be considerably faster than DEM 
in mixed dilute/dense systems, like a fluidized bed, since 
the particles in the dilute regions can be integrated with 
longer time steps than with conventional DEM. 
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APPENDIX A 
    In this work quaternions have been used to represent the 
orientation of each non-spherical particle, since the Euler 
angles are awkward for numerical calculations. The 
quaternions for each particle satisfy the following 
equations of motion (Allen 1987) 

 
where the superscript p means that the angular momentum 
components are taken relative to the body-fixed principal 
axis system. 
    The angular velocity is given by Euler's equations for 
the motion of a rigid body (Goldstein 1980) 
 

 
 
Here ,  and  are the principal moments of inertia, 
i.e. the diagonal components of the inertia tensor in a 
body-fixed principal axis system. Since the torques are 
normally calculated in the laboratory system, we need to 
transform back and forth from the principal axis system. 
The transformation matrix relating components of the 
same vector in the principal and laboratory axes are (Allen 
1987) 

1I 2I 3I

 
 
such that [ ] [ ]p labA=N N .  Here [ ]pN  means the 
coordinate vector of the torque N in the principal axes 
system. To calculate forces and torques we need the 
angular velocity in the laboratory system. We have 
 
  [ ] [ ] [ ]1lab p ptA A−= =ω ω ω
since the transformation matrix from one orthonormal 
coordinate system to another is orthogonal, and the 
inverse of the transformation matrix is just the transpose, 

1 tA A− = . 
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