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1 INTRODUCTION

Prediction of vortex induced vibrations (VIV) has been a semi-empirical discipline until recently. Most of
the models employed in industrial applications (e.g., SHEAR7, VIVA, etc.) involve eigensolutions of the
structure but the required flow input (e.g., lift coefficients, added mass, correlation length, etc.) is obtained
empirically.

In the mid-1990s we initiated a research program (sponsored by ONR) in direct numerical simulation
(DNS) of three-dimensional general flow-structure interactions in order to fill this gap. Our main focus has
been on simulating VIV for flows past cylindrical flexible structures. We started at low Reynolds number
(of the order of 100 to 200) and relatively small aspect ratio (of the order of 10). However, today based on
new algorithms and faster parallel processors we simulate VIV at Reynolds number of the order of a few
thousands and flexible cylinders with aspect ratio of the order of 1000. Although this range is still below the
Reynolds numbers of industrial applications, from this new range extrapolations can be made, and indeed
most of the predictions agree with experimental measurements quantitatively. Progress has also been made
with respect to the type of structures we can simulate. Our initial efforts involved linear structures but more
recent work has focused on non-linear structures with sag and vibrations in all three direction, i.e. including
the axial direction.

In this review, we present some highlights of our work with emphasis on sheared inflow and non-linear
structures. We also present our new path of research that attempts to model from first principles the
various uncertainties associated with flow-structure interaction problems. This leads to a coupled system of
stochastic differential equations for the flow and the structure, a computationally prohibitive task at first
glance. However, we present a new approach to model stochasticity that involves extensions to the polynomial
chaos method pioneered by Nobert Wiener in the late 1930s. The generalization of this approach that we
have introduced could lead to a new generation of non-sterilized simulations of VIV, where uncertainties in
flow conditions and structural properties or support are modeled explicitly.

2 VIV of FLEXIBLE CYLINDERS with SHEARED INFLOW

Following the work in [1, 2] of Direct Numerical Simulations (DNS) of uniform inflow past flexible cylin-
ders subject to Vortex Induced Vibrations (VIV), we have focused on the physics of more complex flows
corresponding to a wide range of inflow conditions. In particular, we have investigated different sheared
(linear or exponential) inflows past long free flexible cylinders (aspect ratio greater than 500). We have also
investigated oblique inflows with large angle of yaw past free rigid cylinders to access the validity of the
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Independence Principle [3].

In the simulations we employ the parallel three-dimensional version of the NεκT αr code with a linear
model for the structure and a Fourier expansion with a 3/2 de-aliasing rule in the longitudinal cable direction.
A boundary-fitted coordinate system is employed similar to the simulations in [4], which has been validated
against an Arbitrary Lagrangian Euler (ALE) formulation [5]. This is preferred for this part of our work as
it provides adequate spatial resolution at a relatively low computational cost.

Figure 1 (right) shows an example of a linear sheared flow past a long flexible cylinder. We observe

Figure 1: Experimental (left) vs Numerical (right) results. Left: Photograph of Vortex Dislocation at
Re=100 for stationary cylinder using dye flow visualization (courtesy of Williamson [6]). Right: Isocontours
of spanwise vorticity (ωz = ±0.18) and oblique fronts in the wake of a forced vibrating flexible cylinder at
Re=100 with linear sheared inflow.

some vortex dislocations and vortex splits very similar to the ones obtained in [6] (see Figure 1: left). Strong
vortex dislocations can result in substantial modulation of the forces on the body as it has been documented
in [7].
In figure 2 (right), we present another example of complex flow physics successfully captured by DNS. In

Figure 2: Experimental (left) vs Numerical (right) results. Left: Photograph of vortex split in the wake
of a forced rigid tapered cylinder at Red̄ = 400 with uniform inflow using lead precipitation visualization
(courtesy of Techet and al. [8]). Right: Isocontour of pressure (p = −0.25) in the wake of a forced rigid
straight cylinder at ReŪ = 400 with sheared inflow.

this case, we properly resolve a vortex split that connects two vortical patterns (“2S” and “2P”) along a
rigid cylinder forced to move in the cross-flow direction with a prescribed amplitude and frequency, see also
[8]. In contrast to vortex dislocations, this hybrid mode is periodic and repeatable and the location of the
vortex split remains stable.



3 FLOW-INDUCED VIBRATIONS of NON-LINEAR CABLES

Our next objective has been to bridge the gap that exists between studies of non-linear dynamic models for
general type cables and DNS of flow past simple string/beam models. The former typically assumes a sim-
plistic or empirical representation of excitation forces but provides very accurate models for the non-linear
dynamic response of the cable allowing realistic description of both steel cables and synthetic cables with
non-linear tension-strain relationship. The latter, on the other hand, assumes simple string/beam linear
models but provides an accurate description of pressure and viscous forces, albeit (at present) in the low
Reynolds number regime.

To this end, we have derived appropriate governing equations for non-linear cables and have developed
a new formulation for the coupled flow-structure problem, see [9]. The structure is discretized using an
explicite finite difference scheme with second-order accuracy in time and space while the flow is discretized
using spectral/hp elements in the context of the arbitrary Lagrangian-Eulerian formulation (ALE). We have
used effectively this new model to simulate large-scale industrial systems such as the lazy wave steel catenary
riser (LWSCR), see below with details in [10].

3.1 Governing Equations for Non-Linear Cables

For non-linear cable, all three-directions are coupled and thus oscillations are excited both along the longi-
tudinal (cable axis) direction as well as along the two transverse directions. We derive a unified formulation
for non-linear cables in terms of a non-dimensional stretching parameter ∆.

Let us consider an infinitesimal segment of a stretched string in a “reference” position, which may not
be in an equilibrium position . Let the arc length of the segment in this reference position be dS. We
parameterize our string with respect to the arc length variable in the reference position, so that at any time
t, we have arc length parameter s(S,t) and an infinitesimal segment of length ds(S, t). Let x, y and z be
the two transverse and the longitudinal direction respectively, in an orthonormal coordinate frame for the
string, then

ds2 = dx2 + dy2 + dz2 ⇒ ∆ =
∂s
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where ∆ represents the length increase or decrease with respect to the reference position.
Let the tension in the string be T (x, y, z) or T (S, t) in terms of our fundamental parameterization. Given

structural damping forces proportional to the string velocity (by a constant R), and external forces F = Fx|y|z

in the three coordinate directions and the position vector X = [x y z]T , the fully non-linear equations are:

∂

∂S

(

T

∆

∂X

∂S

)

+ ∆[F (S, t) − R
∂X

∂t
] = m(S)

∂2X

∂t2
. (2)

In the context of flow-structure interactions, Fx is drag, Fy is lift possibly with a gravitational body force
−m(S)g, and Fz is the spanwise hydrodynamic force component.

The model for the tension derived for Poisson’s ratio P = 1/2 can be written as

T (s, t) = T (S) + EA(S)

(

1 − 1

∆

)

= Tr + EAr

(

1 − 1

∆

)

, (3)

where T (s, t) is expressed in terms of the tension in the reference position T (S) and of a stretching term
EA(S)

(

1 − 1
∆

)

. When the reference position is that of a straight stretched (uniform in radius) string, we
can rewrite the equation (see third part of equation (3)) where both the tension in the reference position
Tr = EArε and the cross-sectional area in the reference position Ar are constant.



For the case of P = 0, the model for the tension takes the form:

T (s, t) = EA0(∆(ε(S) + 1) − 1) = ∆
[

Tr + EAr

(

1 − 1

∆

)]

, (4)

where the last equality in the above equation is valid in the case of a reference position being a straight
stretched string with uniform radius. Therefore, the presence or not of the incompressibility assumption
leads to two different models for the tension, i.e., equations (3) and (4) and a dependence of a different
nature on the non-linear parameter ∆.

3.2 Discretization and ALE formulation

We consider here the incompressible Navier-Stokes equations in a time-dependent domain Ω(t):

ui,t + ujui,j = −(pδij)j + νui,jj + fi in Ω(t) and uj,j = 0 in Ω(t), (5)

We follow a variational form of the momentum equation in order to formulate the Arbitrary Lagrangian
Eulerian (ALE) method. We multiply the Navier-Stokes equations by test functions from H1[Ω(t)] and
integrate by parts. In order to define the appropriate reference system on which time-differentiation takes
place, we employ Reynolds transport theorem and use the fact that the test function is following the material
points; therefore, its time-derivative in that reference frame is zero. The final variational statement then
becomes

d

dt

∫

Ω(t)

viuidx +

∫

Ω(t)

[vi(uj − wj)ui,j − viuiwj,j ]dx =

∫

Ω(t)

[vi,jpδij − νvi,jui,j + vifi]dx. (6)

This is the ALE formulation of the momentum equation where wj is an arbitrary velocity that describes
the motion of the time-dependent domain. It reduces to the familar Eulerian and Lagrangian form by setting
wj = 0 and wj = uj , respectively. Introducing the mass matrix M ≡ (φ(z), φ(z)), the derivative matrix
D ≡ (φ, φz), and the stiffness (Laplacian) matrix L ≡ (φz, φz), where φ(z) is a spectral trial basis, we rewrite
equation (6) and the incompressibility condition in compact form:

d

dt
(MUi) + N i(U,W ) = DT

i P − LijUj + Fi and DiUi = 0 (7)

where we denote the non-linear contributions by N(U,W ) with dependence on the flow velocity field U and
mesh velocity W . The equation for the mesh velocity is defined based on the mesh coordinates from:

dXi

dt
= Wi (8)

We discretize equations (7) and (8) in time using a splitting scheme and stiffly stable integration of third-
order [11]. We then solve for time step (n+1) by first treating explicitly the non-linear and the mesh velocity
terms, and next by treating the elliptic terms implicitly. The mesh velocity is, in general, arbitrary, and it
can be specified explicitly or be obtained from a Laplace equation or based on graph theory for smoother
meshes [12].

3.3 Flow Induced Vibration of a Lazy Wave Riser

We consider a problem involving a riser of complex shape, which is immersed in quiescent flow. Specifi-
cally, we simulate the sag-bend response of the so-called lazy wave steel catenary riser (LWSCR) subject
to a tangential forced motion at one end. The objective is to determine if the LWSCR in the absence of
ocean current will experience intermittent flow-induced vibrations, and whether the resulting hydro-elastic
excitation consists of a standing or a traveling wave response.

Figure 3 (left) provides a 3D schematic of the lower part of the LWSCR static configuration with its



buoyant sleeve. The structural model that we use accounts for time- and space-dependent tension in the
structure. It also accounts for variable linear density of the structure. We use the tension model correspond-
ing to Poisson ratio P = 1/2 (see equation (3)) and the tension of the structure in the reference position is
taken constant, and thus we have T (S) = T0. The reference position is, in this case, a straight stretched
cable with constant tension. However, the code has the capability to treat a case with variable reference
tension T (S). .

Figure 3 (right) shows the variable tension in the structure. The plot shows six different configura-
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Figure 3: Left: LWSCR static configuration schematic (sag-bend part with enlarged body diameter). Right:
Distribution of tension along the LWSCR sag-bend part at different times.

tions (corresponding to six different instants of time) and the corresponding magnitude of the tension is
superimposed on the structure. The variation of tension, which is substantial, is larger in time than in space.

4 MODELING UNCERTAINTY

For flow-structure interactions the interest on stochastic modeling so far has primarily been on the dynamics
of lumped systems, i.e., single- or two-degree-of-freedom second-order oscillators. The effect of the flow has
been modeled via an interaction source term as either white noise or as a Gaussian distribution. However,
non-Gaussian distribution behavior for the response has been documented in experiments. Here, we apply
Wiener-Askey Polynomial Chaos method to solve stochastic coupled Navier-Stokes/structure system such
as cylinders with random properties/boundary conditions subject to VIV.

The Wiener-Askey Polynomial Chaos expansion is a generalization of the original Polynomial Chaos. It
is well suited to represent second-order random processes in terms of orthogonal polynomials. The expansion
basis Ψj(ξ(θ)) is the complete polynomial basis from the Askey-scheme [13]. Using this type of representation,
a general second-order random process takes the form:

u(x, t; θ) =
P

∑

j=0

ûj(x, t)Ψj(ξ(θ)) with P =
(n + p)!

n!p!
− 1, (9)

where we typically truncate the series up to (P + 1) terms. The vector ξ(θ) is the vector of independant
random variables ξi, functions of the independant random variable θ. Since each type of polynomials from
the Askey-scheme forms a complete basis in the Hilbert space determined by their corresponding support,
we can expect each type of Wiener-Askey expansion to converge to any L2 functional in the L2 sense in the
corresponding Hilbert functional space as a generalized result of Cameron-Martin theorem. The numerical
procedure can be greatly simplified as most of the orthogonal polynomials from the Askey-scheme have
weighting functions that take the form of probability function of certain types of random distributions.



4.1 Incompressible Navier-Stokes Equations

We consider laminar flow which can behave randomly subject to the randomness imposed by boundary
conditions or random forcing. We expand the velocity and pressure in terms of the Polynomial Chaos
expansion (see equation 9), substitute into the Navier-Stokes equations, and subsequently we project the
obtained equations onto the random space spanned by the polynomial chaos basis. That is we take the
inner product with each basis and use the orthogonality condition to simplify the equations. We obtain a
discrete set of deterministic equations for the random modes. The random modes are only coupled through
the convective terms.

4.2 Application to Flow-Structure Interactions

We consider the two-dimensional flow-structure interaction case of an elastically mounted circular cylinder
with random structural parameters, subject to vortex-induced vibrations. We study the case of an unsteady
flow in the laminar regime. The flow is computed using the procedure outlined above while the structural
response (equation 10) of the moving cylinder is computed using a very similar procedure described in [13].
For the temporal discretization we use the implicit second-order Newmark scheme [14] for the equation

η̈(t, θ) + c(θ)η̇(t, θ) + k(θ)η(t, θ) = F (t, θ), η(0) = η0 and η̇(0) = η̇0 (10)

We assume that the damping coefficient c(θ) and the spring factor k(θ) of the structure are both random
variables. The free structure, excited by the vortex shedding of the flow follows a random response. Therefore,
the position of the boundary of the cylinder becomes stochastic. This random boundary affects the flow
domain, and consequently the flow itself becomes a stochastic process. The fluid forces on the cylinder are
derived from the random flow velocity field and the random pressure field every time step.

F (t, θ) =

∮

(−Π(t, θ)n +
1

Re
(∇u(t, θ) + ∇u(t, θ)T ) · n)ds. (11)

To simplify the solution of the flow equations, we consider the initial coordinate system (x′, y′, t′) and a
coordinate system (x, y, t) attached to the moving cylinder. The stochastic flow equations are solved using
a mapping approach based on the original deterministic mapping developed in [4]. This process maps the
time-dependent and moving problem to a stationary and non-deforming one. Since the mapping involves
the random cylinder velocity, it is a random process itself and is also represented by a polynomial chaos
expansion.

4.3 Numerical Results

The Reynolds number is Re = 100, and the random parameters for the structure (see Equation 10) take the
following form:

c = c̄ + σcξ1(θ)
k = k̄ + σkξ2(θ)

(12)

where ξ1 and ξ2 are two independent random variables with zero mean, and σc and σk are the standard
deviations of c and k.
We set (c̄, σc) = (0.1, 0.01), (k̄, σk) = (1.0, 0.2) while the initial conditions η0 and η̇0 are set to 0. We note
that there is a non-zero probability that the oscillator has a natural frequency ω0 =

√
k matching the vortex

shedding frequency of a fixed cylinder at this Reynolds number. Also, the system has two random dimensions
(n = 2), and we use third-order Polynomial Chaos expansion (p = 3), which corresponds to a 10-term chaos
expansion (i.e., P + 1 = 10).

Mean and variance solution for the cross-flow displacement and lift and drag coefficients are obtained
using this method. Figure 4 shows instantaneous flood countours (gray scale) and countour lines (white
color) of rms and mean of the vorticity field at t = 600 (non-dimensional time units, corresponding to
more than 100 shedding cycles from the beginning of the simulation). Regions of the flow domain with high



uncertainty are the shear layers and the near-wake of the cylinder, which are of course the regions of utmost
physical interest!

Figure 5 presents the pressure distribution on the cylinder surface at two instants of time within one
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Figure 4: Instantaneous spatial distribution of rms (gray scale) and mean (white line) of vorticity.

shedding cycle of period T . Each plot shows an instantaneous polar view of the pressure distribution on
the cylinder surface as well as the mean cross-flow position of the cylinder y/d at the corresponding time.
The cylinder is represented by a black disk. The flow orientation is from left to right in each plot (angle
θ = 180o: front stagnation point and θ = 0o: rear stagnation point). The deterministic pressure solution
is represented by a dashed line while the stochastic solution is represented by a solid line (mean pressure
solution) and a shaded area (‘error−bar′ region of the pressure solution). This region is centered around the
mean curve and its span is two standard deviations (i.e., one std above and one std below the mean value).
Both deterministic and stochastic pressure solutions take positive values around the front stagnation point.
Noticeable differences exist between stochastic and deterministic solutions. In particular, temporal as well
as spatial changes in the pressure variance (or ‘error − bar′ region) can be seen. However, the deterministic
signal remains, most of the time, inside the envelope of the stochastic solution.
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Figure 5: Polar plots of pressure distribution on the cylinder surface relative to the cylinder mean cross-flow
position at different times. Deterministic pressure solution (dashed line); Stochastic pressure solution (solid
line and shaded area).
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