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Abstract

Waterhammer with fluid–structure interaction (FSI) with or without cavitation can be a rewarding subject for

academic research. This paper gives an overview of two decades of experimental work at the University of Dundee. The
experiments concern impact tests on water-filled steel-pipe systems. The aim of the research has been to produce high-
quality experimental data for vibrating pipe systems with strong liquid–pipe coupling. One set of new data, namely the

natural frequencies of a T-shaped pipe system, is presented. These, and other published data, will be made freely
available at www.win.tue.nl/fsi
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1. Introduction

1.1. Background

Paı̈doussis’ fluid–structure interaction (FSI) encyclo-
paedia [1,2] gives an exhaustive treatment of the
dynamics of pipes carrying steady or harmonically per-

turbed flow. This subject is rich with interesting
fundamental problems and solutions. Our work on
waterhammer with FSI, categorised by Paı̈doussis under

‘unsteady FSI phenomena’, is academically less exciting
but of considerable importance in industrial piping
systems. It was motivated by incidents and accidents

caused by waterhammer in which displacement and
failure of pipes and supports occurred. Research in this
area has been driven largely by safety requirements in

the nuclear and chemical industries [3,4].

1.2. Goal of experiments

The original objective of the research was to design

and build a test rig for clean and accurate experiments
on vibrating pipes with strong liquid–pipe coupling. By
‘clean’, we mean the avoidance of complications

encountered in conventional reservoir–pipe–valve sys-
tems, such as unknown support conditions, unsteady

valve behaviour, non-constant reservoir pressure, dis-
turbing pump vibration, de-aeration, etc. The resulting
experimental results serve as benchmark data for the

validation of theory and software.

1.3. A little bit of history

There are no immediate plans for future experiments
so this is a good time to look back. Alan Vardy initiated
FSI research in Dundee. In 1984, an undergraduate

student undertook preliminary tests with a water-filled
pipe dropped vertically onto a steel base. In 1985, David
Fan took over, working initially with the vertical pipe
but subsequently conducting many experiments with

pipes suspended horizontally on long steel wires. In 1989
and 1990, Arris Tijsseling of Delft University visited
Dundee to carry out cavitation tests; in 1993, he moved

to Dundee. Zhang Lixiang of Kunming University was
visiting professor in 1994 and in 1997. In 1998, Della
Leslie extended the originally planar systems to three

dimensions. Throughout, valuable technical assistance
has been given by many people, of whom Ernie Kuperus
and Colin Stark deserve special thanks.

2. Overview of experimental results

Figure 1 shows seven test systems, each composed of

steel pipes of 60mm outer diameter and 4mm wall
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thickness. One pipe is 4.5m long; the others are 1.3m

long. The systems, suspended on wires, are closed at
their ends and filled with pressurised tap water. Excita-
tion is by the axial or lateral impact of a 5-m long, 51-

mm diameter steel rod on a closed end of the long pipe.
Pressures, strains and structural velocities are measured
at several positions along the pipes.
The dynamic behaviour of the systems is governed by

axial and lateral waves in the pipe walls and by pressure
waves in the liquid. The vertical pipe in the three-
dimensional (3D) system gives rise to torsional waves

and out-of-plane vibration. Strong liquid–pipe coupling
occurs at the closed ends, at the elbow and at the tee.

Weak coupling exists along the pipes due to axial–radial
Poisson contraction/expansion. There is little damping
in the system, except when introduced deliberately

through a support or a damper. Transient cavitation
occurs in cases where the initial static pressure of the
liquid is sufficiently low. Transient vibration is recorded

in tests of typically 30ms duration at sampling intervals
of 8�s. Free vibration tests are typically of 1.5 s dura-
tion, with sampling intervals of 100�s.
Table 1 lists key publications presenting the experi-

mental data. All but one of these contain numerical
simulations confirming (and interpreting) the
measurements.

3. Natural frequencies of water-filled T-shaped system

The fingerprint of a structure is formed by its natural
frequencies, and FSI is known to change these natural

frequencies [4,8]. An accurate measurement of the nat-
ural frequencies of the basic pipe configurations, single,
L-shaped and T-shaped, therefore is essential in FSI
research. The natural frequencies of a single pipe and an

L-shaped pipe have been published [8,12]. Previously
unpublished natural frequencies of the T-shaped system
specified in Table 2 are given in Table 3. These have been

derived from axial impact tests in which the long pipe is
assumed not to vibrate laterally. A typical spectrum is
shown in Fig. 2.

4. Conclusion

This paper summarises the authors’ experimental
research on unsteady FSI phenomena in liquid-filled
pipe systems. It lists key publications and presents one

Fig. 1. Schematic representation of laboratory pipe systems.

Table 1

Key publications of experimental results

Vibration Impact

Configuration Transient Free Axial Lateral Cavitation

Single pipe [5–7] [8] [5–8] [6,8] [7]

Support [9] [9]

Damper [10] [10]

L-shaped [11] [12] [11,12] [12] [11]

T-shaped [13,14] herein [13,14] [14]

L+T [15] * [15],*

3D system * * *

*To be published.

Table 2

Measured properties of T-shaped pipe system

Pipe lengths

(m)

Inner

radius

(mm)

Wall

thickness

(mm)

Young

modulus

(GPa)

Poisson

ratio

kg/m3

Mass

density

Impact plug mass

(kg)

End cap masses

(kg)

T-junction mass

(kg)

4.51

1.34

1.34

26.01 3.945 168 0.29 7985 1.30 0.32 1.06

Table 3

Measured natural frequencies (in Hz) of symmetric water-filled T-shaped pipe system

26 115 152 233 345 381 470 478 579 687 757 796 871 925 986
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omission in published data, namely the natural fre-
quencies of a water-filled T-shaped pipe system. These
frequencies embrace the significant influence of FSI.

The resulting data have the special feature of exhi-
biting coupling phenomena without the complications
that arise in experiments on pseudo-‘real’ systems,

thereby making the data suitable for academic valida-
tion purposes. To facilitate its use for this purpose,
many data are available freely on a website at the
Technical University of Eindhoven: www.win.tue.nl/fsi

This site, initially developed in Dundee by Vardy, Leslie
and Tijsseling, is now supported exclusively by Tijssel-
ing. Contributions to the site will be welcome from any

competent source.
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