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Abstract

A constitutive theory for orthotropic materials is briefly summarized. The constitutive theory allows for anisotropy
of the elastic response and anisotropy resulting from both the yield function and the kinematic hardening. The
formulation also includes a constitutive theory, thermodynamically consistent, for the plastic spin and the re-orien-

tation of the anisotropy properties towards a more favorable position from a thermodynamic point of view. The model
is formulated in terms of the Lee decomposition and Hencky strain measures. A numerical example to illustrate the
model is presented.
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1. Introduction

During the recent years, large strain plasticity received
increasing attention. The use of hyperelastic relations
rendered a thermodynamically consistent framework, in
which elastic procedures (or elastic strains in plastic

processes) do not dissipate energy (see [1] for an earlier
contribution and a discussion in [2]). The use of the
multiplicative (or Lee) decomposition [3] has also been a

major milestone because it is based on the micro-
mechanics of crystals and has an immediate continuum
interpretation [4]. Finally, the combination of a hyper-

elastic stored energy function based on Hencky strain
measures, physically motivated [5], and the use of the
exponential integration algorithm yielded a simple
extension of the small strains algorithms to the large

strains framework, both for isotropic materials [6] and
for anisotropic behavior where the anisotropy is due to
the kinematic hardening [4, 7]. As mentioned in [4], these

algorithms may be used with arbitrary anisotropic yield
functions. Nonetheless, that formulation is restricted to
elastic isotropy.

Effective algorithms for anisotropic plasticity are dif-
ficult to reach due to the inherent difficulties introduced
by anisotropy. Some publications are available on

computational anisotropic plasticity, see for example [8–
10], but these algorithms are not developed following the

successful framework using the Lee decomposition,
logarithmic strains and exponential mapping.

On the other hand, recent experiments conducted on
anisotropic specimens [11] have shown that, for mod-
erate strains (to about 5%), the preferred directions of
orthotropy rotated to more favorable directions given

by the new stress–strain state, whereas the shape of the
yield surface remained basically unaltered.
In the present work, we briefly summarize a con-

stitutive theory for anisotropic plasticity,
thermodynamically consistent, which employs logarith-
mic strain measures, the multiplicative Lee

decomposition, the exponential mapping and the rota-
tion of the directions of the anisotropy properties. The
details of the formulation are given in [12], see also [4].
In the next sections we will follow the notation of [13].

2. Continuum formulation

The theory is based on the multiplicative Lee
decomposition of the deformation gradient X into an
elastic XE and a plastic part Xp, i.e. X = XEXp. The

spatial velocity gradient l is decomposed as:

l ¼ lE þ lp ¼ _XEðXEÞ�1 þ XE _XpðXpÞ�1
h i

ðXEÞ�1 ð1Þ

The tensor Lp :¼ _Xp(Xp)�1 is the modified plastic velo-
city gradient. The pull-back of l to the intermediate

configuration given by XE yields L= L
E + C

E
L
p, where
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CE = XE TXE is the right Cauchy–Green elastic defor-
mation tensor. The elastic deformation rate tensor is

D
E = sym (LE) and the modified plastic deformation

tensor is Dp = sym (Lp). The modified plastic spin is
Wp = skw (Lp). The logarithmic strain tensor is defined

as E
E = ½ ln C

E. Of course, once a strain measure is
known any other strain measure may be obtained by the
proper fourth-order mapping tensors, and the same

holds for strain rate tensors [4,12,13]. Then, stress
measures may also be related by fourth-order tensors
based on work-conjugacy.

Let us define the Mandel stress tensor � = CES,

where S is the second Piola–Kirchhoff stress tensor. The
symmetric and skew parts of the Mandel stress tensor
are obtained by the expressions:

�s ¼ T : SSM and �w ¼ T :WWM ¼ EET� TEE (2)

where T :¼ @ /@EE is the Kirchhoff stress tensor,  is
the free energy function and SSM and WWM are fourth-

order mapping tensors, functions of the elastic strains
(see details in [12]). The free energy function is split into
an elastic part,W, and a plastic (with plastic hardening)

part, H, i.e.  =W + H. The elastic part is assumed to
be anisotropic and may be expressed in terms of the
logarithmic strains as:

tW ¼ UðtJÞ þ � tEE : tAA}}: tEE (3)

where tAA is the elastic anisotropy tensor, whose pre-
ferred directions may rotate at a speed given by WA. In
this expression U (tJ) is the volumetric component, J =
det (XE) and � plays the role of a shear modulus.

On the other hand, the tensor L
p can be split into a

symmetric part Dp (the plastic deformation rate tensor)
and a skew part Wp (the modified plastic spin). It can be

argued (see [4,12]) that the tensor:

tþ�t
tR

w :¼ exp ðtþ�t
Wp�tÞ ð4Þ

is a measure of the incremental plastic rotation due to

lattice dislocations. The tensor tþ�t
tR

w defines, from the
stress-free configuration, a configuration in which the
plastic rotations are frozen during plastic flow. This
configuration is specially suitable for performing the

stress integration and for constructing the continuum
formulations. We label objects in this configuration by
an underlining arrow, as in E 

E, i.e. tþ�tE 
E =

tþ�t
tR

wT tþ�tEE tþ�t
tR

w. Then the rate of the stored
energy function W

.
is:

W
:
¼ T : L EEþTw : WA (5)

where L (�) is a Lie derivative with tþ�t
tR

w acting as

gradient and Tw :¼ E
E

T � T E
E � �w. Similar

expressions apply for the hardening function, H, and the
rate of hardening, H

.
.

All these equations, inserted in the dissipation

equation, yield the following expressions after some
considerations and manipulations:

ð�Tþ@ =@EEÞ : L EE ¼ 0 (6)

D
.
p :¼ �s : Dp þ�w : Wp � Tw : WA � Bs : L Ei

�Bw : WH � � _� � �w _� � 0 (7)

where Bs is the backstress tensor, Bw :¼ E
i
Bs � Bs E

i;
and Ei are the tensorial strain-like internal variables. The
scalars � and �w are the effective stress-like internal

variables (current yield stress and yield couple-stress).
The scalars � and � are the effective strain-like internal
variables (effective plastic strain and effective plastic

rotation).
We assume now – to keep the formulation focused,

but without loss of generality – that the elastic region is
enclosed by two yield functions fs (�s, Bs, �) and fw (�w,

Bw, �w), and the Lagrangian for the constrained problem
is L = D

.
p � _tfs � _�fw, where _t and _� are the consistency

parameters. If we claim that the principle of maximum

dissipation holds, the stress and other internal variables
are such that HL = 0, i.e. for the yield function
expressions given:

rL ¼ 0)

@L

@�s
¼ 0) Dp ¼ _t

@fs
@�s

@L

@�w
¼ 0)Wd ¼ _�

@fw
@�w

@L

@Bs
¼ 0) Ei ¼ �_t

@fs
@Bs

@L

@Bw
¼ 0)WH ¼ � _�

@fw
@Bw

@L

@�
¼ 0) _� ¼ �_t

@fs
@�

@L

@�w
¼ 0) _� ¼ � _�

@fw
@�w

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
L 

where Wd := Wp � WA and WH is the spin of the

hardening anisotropy tensor. These expressions are the
associated flow and hardening rules for general elasto-
plasticity at finite strains. If, as usual, the enclosure of

the elastic region is expressed in the form of fs (�s � Bs

. . .), fw (�w � Bw . . .), then for associated plasticity the
following relationships are automatically enforced:

L Ei ¼ Dp and WH ¼Wd (9)

3. Small strain formulation

In order to isolate the effect of large strains from the
anisotropy rotations, we developed a small strain algo-

rithm, in which higher order terms are neglected except
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for those directly related to the rotation of the ortho-
tropy directions. These rotation terms must be kept in

order to capture such phenomena with a small strain
formulation. Hence, this small strain formulation is in
some sense not a rigorous limit of the large strain for-

mulation. However, it is a convenient formulation to
study the effect of the rotation of the anisotropy
directions.

The small strain formulation is obtained using the
limits:

�s ¼ �; �w ¼ �w :¼ " e� � �" e ð10Þ

where � are the Cauchy stresses and "e are the small

elastic strains. Note that usually the couple-stresses �w

are two orders of magnitude smaller than � if small
strains are strictly enforced. Also, we use the limits:

L Ee ¼ _"e; Dp ¼ _"p; Wp ¼ _!p (11)

where _"p are the plastic strain rates and _!p are the
plastic spins. The incremental plastic rotation is

approximated by tþ�t
tr
w=Iþ�ttþ�t _!p, and the plastic

dissipation equation is:

_Dp ¼ � : _"p þ �w : _!d � � s : _" i � �w : _!H � � _� � �w _� � 0

(12)

where � s are the back-stresses, �w are the back-couple-

stresses, _!d := _!p � _!A. The tensors _!A and _!H are
the spins of the elastic anisotropy tensor AA and the
kinematic hardening anisotropy tensor HH. In this way,
all above large strain expressions are reduced to the

small strain case.

4. Yield function

In order to use explicit expressions, we employ a Hill-
type yield function expression for the symmetric part
(see [14]), which in terms of Cauchy stresses is:

fs ¼ 1
2ð� � � sÞ : AAp

s : ð� � � sÞ � 1
3�

2 (13)

and for the skew part:

fw ¼ 1
2ð�w � �wÞ : AAp

w : ð�w � �wÞ � 1
3�

2
w (14)

where the effective plastic rotation rate �0 is obtained

from the effective plastic strain rate _� as �0 = _� h fwi /�,
where h�i defines the ramp function and � is a material
parameter. The tensors Ap

s and Ap
w are anisotropy ten-

sors whose preferred directions rotate.
With the above theory, a fully implicit integration

algorithm can be established [12].

5. Example

In this example, we illustrate, to a limited extent, the
behavior of the model. We consider a single plane strain

square element. The isochoric prescribed strains in the
Cartesian reference system are:

" ¼
"x 0 0
0 �"x 0
0 0 0

2
4

3
5
x

ð15Þ

The third anisotropy preferred direction is given
by P3 = [0, 0, 1] T

X. For simplicity, the symmetric

Fig. 1. Rotation of the principal directions of elastic strain, stress and of the anisotropy tensor with initial value 0
P1 = [cos 30, sin 30,

0] T
X.
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anisotropy tensors are set equal to each other and are
given in Voigt notation in the principal anisotropy

directions:

¼ p
s ¼

1
3ða1 þ a2Þ �1

3a1 �1
3a2 0 0 0

�1
3a1

1
3ða1 þ a3Þ �1

3a3 0 0 0

�1
3
a2 �1

3
a3

1
3
ða2 þ a3Þ 0 0 0

0 0 0 a4 0 0

0 0 0 0 a5 0

0 0 0 0 0 a6

2
666666664

3
777777775

ð16Þ

AA A

where a1 = 0.8, a2 = 1.2, a3 = 1.0, a4 = 0.7, a5 = 1.0,
a6 = 1.3 are dimensionless constants. We also use Ap

w =
I, �= 76.9 MPa, �= 0.612MPa, H = 0. The resulting

behaviors at the stress point are shown in Figs. 1 and 2.
In the numerical experiments we consider large strain
values using the small strain plasticity theory, merely to

illustrate the observed effects. The possible results that
would be obtained using different admissible couple-
stress �w and ‘viscosity’ parameters � are indicated by

arrows in Fig. 1, and the particular case drawn corre-
sponds to the values �w = 10�8 MPa and � = 10�9

MPa2 and an initial preferred direction 0P1 = [cos 30,

sin 30, 0] TX. Figure 2 shows the results for 0
P1 = [cos 60,

sin 60, 0] T
X and �w = 10�8 MPa and � = 10�8 MPa2.

Both figures show that, as the strain increases, the ani-
sotropy directions rotate so that the principal stress

directions become aligned with the elastic strain princi-
pal directions to a final value governed by �w. This effect
is controlled by the couple-stress �w. The results are

qualitatively similar to those obtained experimentally by
Kim and Yin [11].

6. Conclusions

In this paper a thermodynamically consistent con-
stitutive theory for anisotropic plasticity including a
constitutive relation for the plastic spin is summarized.

The theory is based on an anisotropic hyperelastic
relation for the Kirchhoff stresses and considers both
isotropic and anisotropic kinematic hardening. Con-

stitutive relations are obtained from the yield function
expressions and the principle of maximum dissipation. A
small strain limit theory, preserving the plastic rotation

effect is also developed and some results on the behavior
of the model are shown.
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