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Abstract. We consider the magnetorotational instability (MRI) of a hydrodynamically stable
Taylor-Couette flow with a helical external magnetic field in the inductionless approximation
defined by a zero magnetic Prandtl number (Pm = 0). This leads to a considerable simplification
of the problem eventually containing only hydrodynamic variables. First, we point out that the
energy of any perturbation growing in the presence of magnetic field has to grow faster without
the field. This is a paradox because the base flow is stable without the magnetic while it is
unstable in the presence of a helical magnetic field without being modified by the latter as it has
been found recently by Hollerbach and Rüdiger [Phys. Rev. Lett. 95, 124501 (2005)]. We revisit
this problem by using a Chebyshev collocation method to calculate the eigenvalue spectrum of
the linearized problem. In this way, we confirm that MRI with helical magnetic field indeed
works in the inductionless limit where the destabilization effect appears as an effective shift of
the Rayleigh line. Second, we integrate the linearized equations in time to study the transient
behavior of small amplitude perturbations, thus showing that the energy arguments are correct
as well. However, there is no real contradiction between both facts. The linear stability theory
predicts the asymptotic development of an arbitrary small-amplitude perturbation, while the
energy stability theory yields the instant growth rate of any particular perturbation, but it does
not account for the evolution of this perturbation. Thus, although switching off the magnetic
field instantly increases the energy growth rate, in the same time the critical perturbation ceases
to be an eigenmode without the magnetic field. Consequently, this perturbation is transformed
with time and so looses its ability to extract energy from the base flow necessary for the growth.

1. Introduction

The magnetorotational instability (MRI) is thought to be responsible for the fast formation of
stars and entire galaxies in accretion disks. For a star to form, the matter rotating around it
has to slow down by transferring its angular momentum outwards. Without MRI this process
would take much longer than observed because the velocity distribution in the accretion disks
seems to be hydrodynamically stable while the viscosity alone is not sufficient to account for
the actual accretion rates. It was suggested by Balbus and Hawley [1, 2] that a Keplerian
velocity distribution in an accretion disk can be destabilized by a magnetic field analogously to
a hydrodynamically stable cylindrical Taylor-Couette flow as it was originally found by Velikhov
[3] and later analysed in more detail by Chandrasekhar [4]. In this case, the effect of “frowziness”
of the axial magnetic field in a well conducting fluid provides an additional coupling between
the meridional and azimuthal flow perturbations that, however, requires a magnetic Reynolds



number of Rm ∼ 10. For a liquid metal with the magnetic Prandtl number Pm ∼ 10−5−10−6 this
corresponds to a hydrodynamic Reynolds number Re = Rm/Pm ∼ 106 − 107 [5, 6]. Thus, this
instability is hardly observable in the laboratory because any conceivable flow at such Reynolds
number would be turbulent. However, it was shown recently by Hollerbach and Rüdiger [7] that
MRI can take place in the Taylor-Couette flow at Re ∼ 103 when the imposed magnetic field is
helical. The most surprising fact is that this type of MRI persists even in the inductionless limit
of Pm = 0 where the critical Reynolds number of the conventional MRI diverges as ∼ 1/Pm.
This limit of Pm = 0 formally corresponds to a poorly conducting medium where the induced
currents are so weak that their magnetic field is negligible with respect to the imposed field.
Thus, on one hand, the imposed magnetic field does not affect the base flow, which is the only
source of energy for the perturbation growth. But on the other hand, perturbations are subject
to additional damping due to the Ohmic dissipation caused by the induced currents.

We show rigorously that the imposed magnetic field indeed reduces the energy growth rate
of any particular perturbation. On one hand, this implies that the energy of any perturbation,
which is growing in the presence of magnetic field, has to grow even faster without the field and
vice versa. But on the other hand, the flow which is found to be unstable in the presence of
magnetic field is certainly known to be stable without the field. This apparent contradiction
constitutes the paradox of the inductionless MRI which we address in this study.

The paper is organized as follows. In Section 2, we formulate the problem in the inductionless
approximation. Numerical results are presented and discussed in Section 3. The paper is
concluded with summary in Section 4.

2. Problem formulation

Consider an incompressible fluid of kinematic viscosity ν and electrical conductivity σ filling
the gap between two infinite concentric cylinders with inner radius Ri and outer radius Ro

rotating with angular velocities Ωi and Ωo, respectively, in the presence of an externally
imposed steady magnetic field B0 = Bφeφ + Bzez with axial and azimuthal components
Bz = B0 and Bφ = βB0Ri/r in cylindrical coordinates (r, φ, z), where β is a dimensionless
parameter characterizing the geometrical helicity of the field. Further, we assume the magnetic
field of the currents induced by the fluid flow to be negligible relative to the imposed field
that corresponds to the so-called inductionless approximation holding for most of liquid-metal
magnetohydrodynamics characterized by small magnetic Reynolds numbers Rm = µ0σv0L≪ 1,
where µ0 is the magnetic permeability of vacuum, v0 and L are the characteristic velocity
and length scale. The velocity of fluid flow v is governed by the Navier-Stokes equation with
electromagnetic body force

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p+ ν∇2v +

1

ρ
j × B0, (1)

where the induced current follows from Ohm’s law for a moving medium

j = σ (E + v × B0) . (2)

In addition, we assume that the characteristic time of velocity variation is much longer than
the magnetic diffusion time τ0 ≫ τm = µ0σL

2 that leads to the quasi-stationary approximation,
according to which ∇×E = 0 and E = −∇Φ, where Φ is the electrostatic potential. Mass and
charge conservation imply ∇ · v = ∇ · j = 0.

The problem admits a base state with a purely azimuthal velocity distribution v0(r) =
eφv0(r), where
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Note that the magnetic field does not affect the base flow because it gives rise only to the
electrostatic potential Φ0(r) = B0

∫

v0(r)dr whose gradient compensates the induced electric
field so that there is no current in the base state (j0 = 0). However, a current may appear in a
perturbed state

{

v, p
j,Φ

}

(r, t) =

{

v0, p0

j0,Φ0

}

(r) +

{

v1, p1

j1,Φ1

}

(r, t)

where v1, p1, j1, and Φ1 present small-amplitude perturbations for which Eqs. (1, 2) after
linearization take the form

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = −

1

ρ
∇p1 + ν∇2v1 +

1

ρ
j1 × B0 (3)

j1 = σ (−∇Φ1 + v1 × B0) . (4)

In the following, we focus on axisymmetric perturbations, which are typically much more
unstable than non-axisymmetric ones [8]. In this case, the solenoidity constraints are satisfied
by meridional stream functions for fluid flow and electric current as

v = veφ + ∇ × (ψeφ), j = jeφ + ∇ × (heφ).

Note that h is the azimuthal component of the induced magnetic field which is used subsequently
as an alternative to Φ for the description of the induced current. In addition, for numerical
purposes, we introduce also the vorticity ω = ωeφ +∇× (veφ) = ∇×v as an auxiliary variable.
Then the perturbation may be sought in the normal mode form

{v1, ω1,ψ1, h1} (r, t) =
{

v̂, ω̂, ψ̂, ĥ
}

(r) × eγt+ikz,

where γ is in general a complex growth rate and k is the axial wave number. Henceforth, we
proceed to dimensionless variables by using Ri, R

2
i /ν, RiΩi, B0, and σB0RiΩi as the length,

time, velocity, magnetic field, and current scales, respectively. The nondimensionalized governing
equations read as

γv̂ = Dkv̂ + Reik
(

r2Ω
)

′

r−1ψ̂ + Ha2ikĥ, (5)

γω̂ = Dkω̂ + 2ReikΩv̂ − Ha2ik
(

ikψ̂ + 2βr−2ĥ
)

, (6)

0 = Dkψ̂ + ω̂, (7)

0 = Dkĥ+ ik
(

v̂ − 2βr−2ψ̂
)

, (8)

where Dkf ≡ r−1 (rf ′)′ − (r−2 + k2)f and the prime stands for d/dr; Re = R2
i Ωi/ν and

Ha = RiB0

√

σ/(ρν) are Reynolds and Hartmann numbers, respectively;

Ω(r) =
λ−2 − µ+ r−2 (µ− 1)

λ−2 − 1

is the dimensionless angular velocity of the base flow defined using λ = Ro/Ri and µ = Ωo/Ωi.
Boundary conditions for the flow perturbation on the inner and outer cylinders at r = 1 and
r = λ, respectively, are v̂ = ψ̂ = ψ̂′ = 0. Boundary conditions for ĥ on insulating and perfectly
conducting cylinders, respectively, are ĥ = 0 and (rĥ)′ = 0 at r = 1;λ.

The governing Eqs. (5–8) for perturbation amplitudes were discretized using a spectral
collocation method on a Chebyshev-Lobatto grid with a typical number of internal points
N = 32−96. Auxiliary Dirichlet boundary conditions for ω̂ were introduced and then numerically
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Figure 1. Critical Reynolds number versus µ for insulating cylinders with λ = 2 at various
helicities β and fixed Hartmann number Ha = 15.

eliminated to satisfy the no-slip boundary conditions ψ̂′ = 0. Electric stream function ĥ was
expressed in terms of v̂ and ψ̂ by solving Eq. (8) and then substituted in Eqs. (5, 6) that
eventually resulted in the 2N × 2N complex matrix eigenvalue problem which was efficiently
solved by the LAPACK’s ZGEEV routine.

In addition, Eqs. (5–8) were discretized by using a Chebyshev-tau approximation and
integrated forward in time by a fully implicit 2nd order scheme with linear extrapolation
of convective and magnetic terms. We tested the numerical code by finding a few leading
eigenmodes and eigenvalues by the so-called “snapshot” method [9] and compared to the results
of the above described code as well as to the linear instability results [10] and [7]. Agreement
was at least three significant digits.

Equations (3, 4) straightforwardly lead to the kinetic energy variation rate of a virtual
perturbation v1 satisfying the incompressiblity constraint and the boundary conditions.
Multiplying Eq. (3) scalarly by v1 and then integrating over the volume V which extends
axially over the perturbation wavelength, we obtain

∂E1

∂t
= −

∫

[(v1 · ∇)v1] · v0dV −

∫

(

νω2
1 +

j21
σ

)

dV,

where E1 = 1

2

∫

v2
1dV is the energy of perturbation. The first integral in the equation above

accounts for the interaction of the perturbation with the basic flow which is not affected by
the magnetic field as noted above. The sign of this integral may vary depending on v1. Thus,
this term presents a potential source of energy. In contrast, the second term is negative definite
presenting an energy sink due to both viscosity and conductivity. Since the current is induced
only in the presence of a magnetic field while the source term does not depend on the magnetic
field, we conclude that the instant growth rate of any given perturbation has to be lower with
magnetic field than without it

∂E1

∂t

∣

∣

∣

∣

B0>0

<
∂E1

∂t

∣

∣

∣

∣

B0=0

. (9)

3. Numerical results

The following results concern cylinders with λ = 2, as in Ref. [7]. As seen in Fig. 1, which
shows the critical Reynolds number as a function of µ for Hartmann number Ha = 15 and
various geometrical helicities β, the linear instability threshold can indeed extend well beyond
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Figure 2. Limiting value of µ versus the helicity β for insulating and perfectly conducting
cylinders with λ = 2 at various Hartmann numbers.

the Rayleigh line µc = λ−2 = 0.25, defined by d
(

r2Ω
)

/dr = 0, when the magnetic field is helical
(β 6= 0). In contrast to Pm 6= 0 [7], the range of instability is limited by µmax, which is plotted
in Fig. 2 depending on the geometrical helicity β at various Hartmann numbers Ha for both
insulating and perfectly conducing cylinders. The critical Re tends to infinity as µ approaches
µmax as in the nonmagnetic Taylor-Couette instability. Thus, in the inductionless approximation,
the destabilizing effect of a helical magnetic field appears as a shift of the Rayleigh line towards
higher µ. The shift is especially pronounced for perfectly conducting cylinders at β ≈ 4.

The results of time-integration of the linearized problem are illustrated in Fig. 3 for a
perturbation with k = 2 at Re = 2000. This perturbation is unstable in the presence of a
magnetic field with β = 4 and Ha = 15 (Rec = 1554, kc = 2.5) and stable without the field
because µ = 0.27 > µc. First, we integrate an arbitrary, sufficiently small initial perturbation
for a sufficiently long time so that the unstable mode dominates but still remains small for the
linear approximation to be valid. Then we “switch off” the magnetic field by setting Ha = 0.
Note that we assume the field to be instantly absent when it is switched off. So we just compare
the evolution of the given perturbation with and without the field. As seen on the first inset of
Fig. 3, the energy of an unstable perturbation indeed starts to grow faster instantly after the
magnetic field is switched off. However, the growth keeps only for a short time and then the
energy quickly decays as predicted by the linear stability analysis. Note that the energy keeps
decaying in an oscillatory way because the dominating perturbation without the field is not a
pure traveling wave but rather a superposition of two oppositely traveling waves which both have
the same decay rate and frequency whereas the amplitude ratio of both waves is determined by
the initial condition.

The magnetic field is switched on again at the instant t = 0.1. The corresponding evolution of
the perturbation energy is shown on the r.h.s. of Fig. 3 in enlarged scale. As seen in the second
inset, the energy decay rate instantly increases in accordance to (9) when the magnetic field is
switched on. However, after a short transient the perturbation energy resumes the growth in
agreement with the linear stability analysis. In this case, the energy growth is purely exponential
because the dominating perturbation is a single traveling wave. Thus, this particular example
of time integration confirms the validity of Eq. (9) which applies in general to any arbitrary
perturbation. The energy of an unstable perturbation indeed starts to grow faster when the
magnetic field is switched off.
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Figure 3. Time evolution of the energy of the dominating perturbation with k = 2 at Re = 2000
after switching the magnetic field off and later on again for µ = 0.27, Ha = 15, and β = 4.
Extrapolation shows how the evolution would proceed without the change of the magnetic field.

4. Conclusions

We have considered MRI in the inductionless approximation at Pm = 0 that allowed us to
eliminate the magnetic field and, thus, led to a considerable simplification of the problem
containing only hydrodynamic variables as in the classical Taylor-Couette problem. First, we
used a Chebyshev collocation method to calculate the eigenvalue spectrum of the linearized
problem. In this way, we confirmed that MRI with helical magnetic field indeed works in the
inductionless limit. Second, we integrated the linearized equations forward in time to study the
transient behavior of small amplitude perturbations. In this way, we showed that the energy
arguments are correct as well – the energy of an unstable perturbation indeed starts to grow
faster when the magnetic field is switched off. However, there is no real contradiction with the
linear stability predictions because the energy grows only for a limited time and then turns to
decay as predicted by the linear stability. It is important to stress that the linear stability theory
predicts the asymptotic development of an arbitrary small-amplitude perturbation, while the
energy stability theory yields the instant growth rate of any particular perturbation, but it does
not account for the evolution of this perturbation. Thus, although switching off the magnetic
field instantly increases the energy growth rate of the most unstable as well as that of any other
perturbation, in the same time the critical perturbation ceases to be an eigenmode without
the magnetic field. Consequently, this perturbation is transformed with time and so looses its
ability to extract energy from the base flow necessary for the growth. Analogously, switching on
the magnetic field causes an instant decrease of the growth rate of any particular perturbation
because of Ohmic dissipation, while the magnetic field transforms the perturbation so that it
becomes able to extract more energy from the base flow and so eventually grows.

To understand the physical mechanism of this instability, note that a helical magnetic field, in
contrast to pure axial or azimuthal fields, provides an additional coupling between meridional and
azimuthal flow perturbations. In a helical magnetic field with axial and azimuthal components,
the radial component of the meridional flow perturbation induces azimuthal and axial current
components, respectively. Interaction of this current with the imposed magnetic field results
in a purely radial electromagnetic force which retards the original perturbation. So, it has a
stabilizing effect similar to the radial deformation of magnetic flux lines in the conventional
MRI [3, 4]. However, in the perturbation of finite wavelength there is also a radial current
component associated with the axial one as required by the solenoidity constraint. This radial



current interacting with the axial component of the helical magnetic field gives rise to the
azimuthal electromagnetic force, thus coupling the meridional and azimuthal flow perturbations
similarly to the conservation of the angular momentum in the purely hydrodynamic Taylor-
Couette instability or the azimuthal twisting of axial magnetic flux lines in the conventional
MRI. Note that the latter effect also renders the imposed axial magnetic field locally helical
that, however, requires Pm > 0 and Re ∼ 1/Pm.

In conclusion, when the imposed magnetic field is helical, the inductionless approximation
defined by Pm = 0 is applicable to MRI where it leads to a considerable simplification of the
problem containing only hydrodynamic variables as in the classical Taylor-Couette problem.

Acknowledgments

The research was supported by Deutsche Forschungsgemeinschaft in frame of the Collaborative
Research Centre SFB 609. The authors would like to thank G. Rüdiger for helpful comments
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