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Abstract. We study numerically instabilities developed in a fluid layer with a free surface, in
a cylindrical container which around the origin at the bottom has a heating spike modelled by
a parameter β. Axysimmetric basic states appear as soon a non-zero horizontal temperature
gradient is imposed. These states are characterized by the presence of a hot boundary layer in
the center and a convective motion in the whole cell. The basic states may bifurcate to different
solutions depending on the parameters of the problem. We consider the small aspect ratio and
high localization case. Waves (spirals) or stationary patterns with low wave numbers appear
after the bifurcation. They are more localized depending on the localization of the heating.
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1. Introduction

Instabilities and pattern formation in buoyant flows have been extensively studied in recent

years. Classically, heat is applied uniformly from below [1] and the conductive solution (also

called the basic solution) becomes unstable for a critical vertical temperature gradient beyond

a certain threshold. A more general setup for Rayleigh-Bénard convection than the case of

uniform heating, consists of a basic dynamic flow imposed by a non-zero horizontal temperature

gradient which may be either constant or not. Numerical results obtained at the former setup in

an annular domain address the importance of both vertical and horizontal temperature gradients

in the development of instabilities [2, 3, 4, 5]. In this work we consider a cylidrical domain with

a localised Gaussian-like heating at the bottom. Therefore, apart from vertical and horizontal

temperature gradients, a heat parameter related to the shape of the heating profile at the bottom

is introduced. This problem is studied in Ref. [6] in a less localised case where it is shown many

different types of instabilities may appear depending on the basic flow and external parameters:

giant single armed spiral waves, targets, stationary and oscillatory patterns with different wave

numbers extended or localized. In this paper we consider a smaller aspect ratio and higher

localization (as a spike). In this case very localised spirals and targets with low wave numbers

appear after the bifurcation. They are more localized depending on the localization of the

heating. This problem is relevant for geophysics applications as thermal plumes [7].

The paper is organized as follows. Section 2 describes the physical setup, the general

mathematical formulation of the problem in a dimensionless form, for basic solutions and their

linear stability analysis. Section 3 explains the numerical results on both, the basic and growing

perturbations. Finally in section 4 the conclusions are presented.

2. Formulation of the problem

The physical set up (see figure 1) consists of a horizontal fluid layer in a cylindrical container of

radius l (r coordinate) and depth d (z coordinate). The upper surface is open to the atmosphere

and the bottom plate is rigid. At z = 0 the imposed temperature is a Gaussian profile which

takes the value Tmax at r = 0 and the value Tmin at the outer part (r = l). The environmental

temperature is T0. We define 4Tv = Tmax − T0, 4Th = Tmax − Tmin and δ = 4Th/4Tv.

In the equations governing the system ur, uφ and uz are the components of the velocity field

u, T is the temperature, p is the pressure, r is the radial coordinate and t is the time. The

magnitudes are expressed in dimensionless form after rescaling in the following form: r ′ = r/d,

t′ = κt/d2, u′ = du/κ, p′ = d2p/ (ρ0κν) , Θ = (T − T0) /4T . Here r is the position vector, κ



the thermal diffusivity, ν the kinematic viscosity of the liquid and ρ0 is the mean density at the

environment temperature T0. After reescaling the domain Ω1 = [0, l]× [0, d] is transformed into

Ω2 = [0,Γ] × [0, 1] where Γ = l/d is the aspect ratio

The system evolves according to the momentum and the mass balance equations and to the

energy conservation principle, which in dimensionless form are (the primes in the corresponding

fields have been dropped),

∇ · u = 0, (1)

∂tΘ + u · ∇Θ = ∇2Θ, (2)

∂tu + (u · ∇)u = Pr
(

−∇p + ∇2u + RΘez

)

, (3)

where the operators and fields are expressed in cylindrical coordinates and the Oberbeck-

Bousinesq approximation has been used. Here ez is the unit vector in the z direction. The

following dimensionless numbers have been introduced: the Prandtl number Pr= ν/κ and the

Rayleigh number R= gα4Td3/κν, which represents the buoyant effect. In these definitions α

is the thermal expansion coefficient and g is the gravity constant.

We discuss now the boundary conditions (bc). The top surface is flat, which implies the

following condition on the velocity,

uz = 0, on z = 1. (4)

and free slip,

∂zur = 0, ∂zuφ = 0, on z = 1. (5)

Lateral and bottom walls are rigid, so

ur = uφ = uz = 0, on z = 0, (6)

ur = uφ = uz = 0, on r = Γ. (7)

For temperature we consider the dimensionless form of Newton’s law for heat exchange at the

surface,

∂zΘ = −BΘ, on z = 1, (8)

where B is the Biot number. At the bottom a gaussian profile is imposed,

Θ = 1 − δ(e
( 1

β
)2
− e

( 1

β
−( x

Γ
)2 1

β
)2

)/(e
( 1

β
)2
− 1) on z = 0, (9)

where β is a measure of the sharpness of the profile. In figure 2 several plots of this profile for



Figure 1. Physical set-up.
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Figure 2. Temperature boundary conditions
at the bottom for Γ = 5, δ = 1 and different
values of β.

different values of the parameters can be seen. The lateral wall is insulating,

∂rΘ = 0 on r = Γ. (10)

The use of cylindrical coordinates, which are singular at r = 0, requires regularity conditions on

velocity, pressure and temperature fields. In general, these conditions are expressed as follows

[10]
∂(urer + uφeφ)

∂φ
= ∂φuz = ∂φp = ∂φΘ = 0 on r = 0, (11)

where er and eφ are the unit vectors in the r and φ directions respectively. To summarize,

the dimensionless equations contains these external parameters (R,Γ,Pr, δ, B, β). Our aim is to

describe the type of bifurcations that appear for small values of β (high localization) taking R

as bifurcation parameter and fixed values of the rest of the parameters: Γ = 5, Pr = 0.4, δ = 1

and B = 0.05.

2.1. Basic state and linear stability analysis

The horizontal temperature gradient at the bottom (i.e, δ 6= 0) settles a stationary convective

motion which is called basic state. It is a time independent solution to the stationary problem

obtained from equations (1-3). The basic state is axisymmetric therefore it depends only on

r− z coordinates (i.e. all φ derivatives are zero). The velocity field of the basic flow is restricted

to u = (ur, uφ = 0, uz). Regularity conditions (11) now become

ur = ∂ruz = ∂rp = ∂rΘ = 0 on r = 0. (12)



We have solved numerically the simplified equations for the basic state together with its boundary

conditions. We use a Chebyshev collocation method with details given in section Ref. [6].

The stability of the basic state is studied by perturbating it with a vector field depending on

the r, φ and z coordinates, in a fully 3D analysis, for instance:

ur(r, φ, z) = ub
r(r, z) + ūr(r, z) exp(ikφ + λt), (13)

and similarly for uφ, uz, Θ and p. Here the superscript b indicates the corresponding

quantity in the basic state and the bar refers to the perturbation. We have considered Fourier

mode expansions in the angular direction, because along it boundary conditions are periodic.

Expressions (13) are replaced into basic equations (1-3) and the resulting system is linearized.

Boundary conditions for perturbations (ūr, ūφ, ūz ,Θ, p) are found by substituting (13) into (4-

11). Regularity conditions (11) depend now on the wavenumber k:

ūr = ūφ =
∂ūz

∂r
=

∂Θ̄

∂r
=

∂p̄

∂r
= 0, for k = 0, (14)

ūr + iūφ = ūz = Θ̄ = p̄ = 0, for k = 1, (15)

ūr = ūφ = ūz = Θ̄ = p̄ = 0, for k 6= 0, 1. (16)

The resulting problem is an eigenvalue problem in λ. If Re(λ) < 0 for all eigenvalues the

basic state is stable while if there exists a value of λ such as Re(λ) > 0 the basic state becomes

unstable. The condition Re(λ) = 0 may be satisfied for certain values of the external parameters,

(R,Γ,Pr, δ, B, β), which define the critical threshold. At the critical threshold, a stationary

bifurcation takes place if Im(λ) = 0 while it is a Hopf bifurcation if Im(λ) 6= 0.

We have solved both the basic state and the linear stability problem as stated in (1-3), i.e.

in primitive variables formulation by expanding the fields with Chebyshev polynomials (see Ref.

[8]). Using this technique, the problem of the spurious modes for pressure arises [8, 9], which

we have solved using the method proposed in [10], taking additional boundary conditions. They

are obtained by the continuity equation at z = 0 and the normal component of the momentum

equations on r = Γ and z = 1.

We have solved numerically the stationary axisymmetric version of equations (1-3) together

with the boundary conditions, by treating the nonlinearity with a Newton-like iterative method

as it is explained in Ref. [6].

The eigenvalue problem is discretized by expanding pertubations (13) in a truncated series

of orthonormal Chebyshev polynomials as we did with the basic state. These expressions are

replaced into the linearized version of equations (1-3) and boundary and regularity conditions



Table 1. Critical Rayleigh numbers Rc for different orders of expansions in Chebyshev
polynomials. The critical wave number is kc = 2 oscillatory and the parameters are Γ = 5,
Pr = 0.4, δ = 1, B = 0.05 and β = 0.3.

N = 9 N = 11 N = 13 N = 15
L = 33 5.52 · 105 6.62 · 105 7.16 · 105 7.15 · 105

L = 35 5.85 · 105 6.79 · 105 7.34 · 105 7.30 · 105

L = 37 5.59 · 105 6.64 · 105 7.35 · 105 7.31 · 105

L = 39 5.54 · 105 6.60 · 105 7.31 · 105 7.29 · 105

(4-11). We use a collocation method where equations are evaluated at the Gauss-Lobatto points.

Evaluation rules are explained in Ref. [6]. The eigenvalue problem is then transformed into its

discrete form

Aw = λBw (17)

where w is a vector which contains P unknowns and A and B are P ×P matrices. The discrete

eigenvalue problem (17) has a finite number of eigenvalues λi. The stability condition previously

explained must be required now upon λmax where λmax = maxRe(λi). In Ref. [11] many details

on how to solve this problem efficiently are given.

As in [3], we have carried out a test on the convergence of the method that let us assure

the correctness of the results. Table I shows some results on convergence rates. We find that

expansions of order 33 × 9 are enough to ensure accuracy within 1%.

3. Numerical Results

In this section we describe numerical results found for Γ = 5 and small values of the shape

coefficient β (β ∈ [0.1, 0.5]). We restringe ourselves to this range due to convergence properties

of the numerical method, as β decreases convergence becomes worse. An special treatment of the

problem with a specific change of variables to improve convergence properties will be addressed

in future work.

We have solved numerically the stationary axisymmetric version of equations (1-3) together

with the boundary conditions, as explained in section Ref. [6]. The basic states are formed by

hot boundary layers near the center that become more localized when β decreases (see figures

3a and 4a). Those layers generates convective motions in the whole cell with strong velocities

near the center (see figures 3b and 4b).

We have studied numerically the linear stability of the numerical basic states following

explanations of Ref. [6]. We consider the external parameter R as control parameter. By

control parameter we mean the parameter that changed leads to an instability while all the
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Figure 3. a) Isotherms of the basic state
corresponding to values of the parameters β =
0.5, R = 1.8 · 105, Γ = 5, Pr = 0.4, B = 0.05
and δ = 1; b) velocity field of the basic state
for the same values of the parameters.
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Figure 4. a) Isotherms of the basic state
corresponding to values of the parameters β =
0.1, R = 5.8 · 105, Γ = 5, Pr = 0.4, B = 0.05
and δ = 1; b) velocity field of the basic state
for the same values of the parameters.

others are fixed (Γ = 5, Pr = 0.4, B = 0.05 and δ = 1). This occurs when λmax(R) changes

from a negative value to a positive one as R varies. The value of Rc for which λmax(Rc) = 0 is

the critical value. Figure 5 displays λmax(Rc) as a function of the wave number k and all other

parameters fixed. The eigenvalue with maximum real part corresponds to k = 3 and as it is

complex, the bifurcation is oscillatory. Depending on the parameters different instabilities are

obtained either stationary or oscillatory with different growing modes, which are analyzed next.

We study how the shape factor β affect to the instabilities. Figure 6 displays critical values of

Rc as a function of β. Critical wave numbers kc and the corresponding growing modes are shown

in this figure where void circles correspond to stationary bifurcations while crossed ones stand

for oscillatory instabilities. The critical Rc increases as β decreases till it presents a maximum

at β = 0.2 and it decreases at β = 0.1 where the bifurcation becomes stationary. As β decreases

the critical wave number decreases. The growing modes are spiraled in the Hopf bifurcation

cases and it is a target in the stationary bifurcation. The critical eigenfunctions become more

localized as β decreases. In the r − z plane for the growing modes two types are observed:

for medium β (0.2-0.5) a hot boundary layer is formed in the center of the cylinder where the

heating is applied (see figure 7a), that corresponds to an oscillatory bifurcation; and for small

β (0.1) a cold boundary layer is formed in the center (see figure 8a) which corresponds to a

stationary bifurcation. Those layers generate some convective motions in the r − z plane in the

whole layer (see figures 7b and 8b).
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rate λ as a function of k for basic state at
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Figure 6. Critical R, wave number k values
and growing modes as a function of β for
δ = 1. Remaining external parameters are
Γ = 5, Pr = 0.4 and B = 0.05. Void circles
correspond to stationary instabilities while
crossed ones stand for oscillatory instabilities.
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Figure 7. a) Isotherms of growing mode
eigenfunction in the r−z plane corresponding
to values of the parameters β = 0.5, R =
1.8 · 105, Γ = 5, Pr = 0.4, B = 0.05 and
δ = 1; b) velocity field of the growing mode
eigenfunction in the r − z plane for the same
values of the parameters.
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Figure 8. a) Isotherms of growing mode
eigenfunction in the r−z plane corresponding
to values of the parameters β = 0.1, R =
5.8 · 105, Γ = 5, Pr = 0.4, B = 0.05 and
δ = 1; b) velocity field of the growing mode
eigenfunction in the r − z plane for the same
values of the parameters.



4. Conclusions

We have studied the stationary and axisymmetric basic states that appear in a Rayleigh-Bénard

problem with a heating spike in the bottom which shape is measured by the factor β. They

consists of hot boundary layers in the center that generates a convective motion in the whole

cell. These states bifurcate to different 3D structures depending on the shape factor β for fixed

values of the rest of the parameters. We have found a different behavior between medium values

of β and small ones. For medium values of β the bifurcation is oscillatory to spiraled structures.

The patterns become more localized and the wave numbers decrease as β decreases. For small

values of β the bifurcation is stationary with small wave number kc = 1.
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