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Abstract. The aim of this work is to study the general aspects of the convective flow 
instabilities in a simulated Czochralski  system. We considered the influence of the buoyancy 
and crystal rotation. Velocity fields, obtained by an ultrasonic technique, the corresponding 2D 
Fourier spectra and a correlation function, have been used. Steady, quasi-periodic and turbulent 
flows, are successively recognized, as the Reynolds number was increased, for a fixed 
Rayleigh number.  The orthogonal decomposition method was applied and the numbers of 
modes, involved in the dynamics of turbulent flows, calculated. As far as we know, this 
method has been used for the first time to study the Czochralski convective flows. This method 
provides also information on the most important modes and allows simple theoretical models 
to be established. The large rotation rates of the crystal were found to stabilize the flow, and 
conversely the temperature gradients destabilize the flow. Indeed, the increase of the rotation 
effects reduces the number of involved modes and oscillations, and conversely, as expected, 
the increase of the buoyancy effects induces more modes to be involved in the dynamics. Thus, 
the flow oscillations can be reduced either by increasing the crystal rotation rate to the 
adequate value, as shown in this study or by imposing a magnetic field. 

1.  Introduction 
Although several methods have been used to manufacture silicon single crystals, the so-called 
Czochralski (Cz) crystal puller method is widely used for industrial production. This fact comes from 
the ability of the Cz method to meet the stringent requirements for purity and crystallographic 
perfection. A comprehensive introduction and review of the research carried out on this flow, prior to 
1997, can be found in [1]. More recently, other papers dealing with the Cz convective system have 
been published [2-4]. These papers were mainly devoted to the numerical modelling of the flow 
instabilities and the application of a magnetic field to suppress the flow oscillations. 

The flow structure in a Czochralski crucible during silicon crystal growth influences the quality of 
the grown crystals [5]. Indeed, the flow oscillations, caused by the flow of the melt, are known to have 
an especially strong influence upon microdefects and striations which appear in the final crystal and 
which are detrimental to the quality of semi-conductor devices made from it [6]. Thus, a more 
complete understanding of the transport phenomena and the fluid flow in silicon melts is essential.  

Recently, much effort has been devoted to producing large-sized crystals to increase the 
productivity of semiconductor industry. Since the size of the Czochralski crucible has to be large, the 
assumption of a laminar flow may not be valid. Indeed, the large values of Reynolds (Re) and 
Rayleigh (Ra) numbers for such extended systems imply that the fluid motions may be turbulent.  



 
 
 
 
 
 

 
2

Once a turbulent state is recognized, it is interesting to measure at least the number of modes 
involved in the turbulent dynamics. For that purpose, the Karhunen-Loeve (KL) decomposition [7] has 
been applied to experimental [8, 9] and numerical data sets [10, 11]. More recently, it has been used to 
analyse the flow structures in a ventilated room [12] and has been applied to data sets of internal 
combustion engine flows [13]. This method is useful not only in estimating the number of the degrees 
of freedom of a dynamic system, but allows also theoretical models of the systems under study to be 
established [14]. This method has been applied to few experimental data sets because of a lack of a 
suitable measurement method that can provide spatio-temporal information with sufficient resolutions. 
Now, we can use the Ultrasonic Velocity Profile (UVP) technique [15] which allows obtaining a 
suitable spatio-temporal velocity field. 

As far as we know, no experimental work has been carried out to study the influence of the rotation 
rate (Reynolds number) and the gradient of temperature (Rayleigh number) on the Cz flow 
instabilities, using the 2D Fourier spectra and the correlation function to recognize the various flow 
states, and the orthogonal decomposition method to estimate the number of degrees of freedom 
(dimension) of the turbulent regimes. The use of such methods allows a more understanding of the Cz 
flow instabilities and might be useful in giving us the means to suppress or control its oscillations. 

Consequently this paper deals with such problems using velocity fields, obtained by the UVP 
technique. The paper is organized as follows, in section 2, the experimental setup and the UVP 
technique are briefly described. In section 3, the different methods, used to analyze the Cz flow, are 
presented; the results are presented and discussed in section 4. In section 5, some conclusions are 
given. 

2.  Experimental procedure 
The experimental setup, as shown in Figure 1, consisted of a simulated crucible (1) made of Pyrex 
glass of 10 cm inner diameter and 10 cm height. A simulated crystal (2) of 3 cm diameter made of 
brass. The crucible (1) was filled with 2 centistokes silicone oil (Prandtl number, Pr = 28 at                T 
= 25 °C) as a model liquid (3). 

Figure 1. Schematic of the experimental set-up, (1) simulated crucible, (2) simulated crystal, 3) 
silicone oil, (4) Motor to rotate the simulated crystal, (5) and (6) temperature-regulated baths, (7) UVP 

sensor, (8) UVP monitor.             
 
The simulated crystal (2) was rotated by a motor (4). The temperature gradient between the 

crucible and the crystal was obtained by circulating cold and hot water flows respectively coming 
from two temperature-regulated baths (5, 6). The flows were visualized in the vertical median plane 
using a light sheet. Powderred ferrite was used as a tracer.  

In many studies, the number of simultaneous measurements is limited by the number of sensors 
and/or data acquisition channels. To overcome this problem, we used the UVP method [15], which 
allowed the instantaneous measurements of velocity profiles. This method uses the pulsed echography 
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of an ultrasound. An ultrasound pulse is emitted from a transducer along the measurement line (the 
diameter of the crucible), and the same transducer receives the echo reflected back from particles 
scattered in the fluid. The position information is given by the time elapsing between the pulse 
emission and the echo reception, and velocity information is obtained from the Doppler shift in the 
frequency at each instant. The UVP sensor (7) was set 1 cm below the liquid upper surface, and in 
contact with the outer wall of the crucible. 

 

 

Figure 2. Velocity profiles for a fixed Ra (=107). 
(a) steady state (Re  = 7.1×102), 

(b) quasi-periodic state (Re = 1.2×103), 
(c) turbulent state (Re = 2.9×103). 

 
Figure 2 shows examples of UVP fields. There are 128 measurement points per profile and one 

experimental run consists of 1024 temporal profiles that are successively collected (the measurement 
time is 554 s for the data in Figure 2). The speed and direction of the flow are color-coded. The flow 
moving towards the probe is green to blue, and red to yellow, away from the probe. These fields were 
used as the basis on which the analysis has been conducted. 

The flow was studied as a function of the relevant physical parameters in the Czochralski flow, 
namely, the Rayleigh number, Ra = gβΔT Rcru

3/νκ and the Reynolds number, Re = ΩRcry
2/ν, where 

Rcry and Rcru are the radius of the crystal and the crucible respectively; ΔT is the difference of 
temperature applied between the crucible and the crystal; β is the volumetric coefficient of thermal 
expansion, ν is the kinematic viscosity, κ is the thermal diffusivity, Ω is the angular velocity of the 
crystal, and g is the gravity. 
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3.  Analysis methods 
The spatio-temporal nature of the flow is clearly obtained and displayed on the UVP data (Figure 2). 
However, to further understand the phenomena involved, we used the following methods. 

3.1.  Fourier Spectrum 
The UVP data can be analyzed by a 2D Fourier transform to generate a 2D spectrum on the 
wavenumber (k = 0 to 127) and frequency (f = 0 to 511 Hz). The evolution of the flow through its 
velocity fields can then be studied using the corresponding frequency-wavenumber spectra. This 
method is very useful because it allows one to gather on the same figure the temporal modes (through 
the frequency of oscillation, f, axis corresponding to the time axis in the velocity profile) and spatial 
modes (through the wavenumber, k, axis corresponding to the position axis in the velocity profile). 

3.2.  Correlation function 
We have also computed the temporal correlation function, defined as:  

 
where v (x, t) and v (x, o) are the values of the velocity at the same position measured at different 
times and < > denotes an average. 

3.3.  Karhunen-Loève (KL) decomposition 
As the KL decomposition applied to dynamic systems has been described in detail [7], we will restrict 
ourselves here to describing the overall concept. 

The field to be decomposed using the KL method is a velocity field v (x, t) obtained by UVP. Each 
data set is composed of 128×1024 velocities in a matrix form.  

Consider a data set 
 

{vi, i = 1, …,n}                    (2) 
 

where each vi is an m-vector 
 

vi = (v1i,…, vmi)T               (3) 
 

where n = 1024 and m = 128 in this case. 
The principle of the method is to find a set of vectors that forms a basis. The resolution leads to an 

eigenvalue problem for the Φ's : 
 

CΦj = λjΦj           (4) 
where  
 

 
is the ensemble averaged covariance matrix, and the Φ's are called the empirical eigenfunctions or 

coherent structures. C is a m×m (128×128) symmetrical non-negative matrix, and consequently 
determines a complete set of orthogonal eigenvectors, and real, non-negative, eigenvalues. These 
eigenvalues can be ordered, thus: 

λ1 ≥ λ2 ≥ λ3 …≥ λm                       (6) 
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where λj is the energy of mode j and  

 

 
is the total energy of the system. 
Once the Φ's are determined by finding the eigenvectors of C, the aij coefficient can be found by 

projecting the data vectors onto each eigenvector in turn: 
 

aij = (vi, Φj)      (8) 
 

These coefficients (aij) are referred to as "reconstruction coefficients". To study how the energy of 
the flow is distributed among the modes, we have defined the quantity: 

 

 
which is the percentage of the energy contained in the first p modes. In order to estimate the 

dimension of a flow, we used the KL dimension, Dkl, which is the number of modes capturing 90 % of 
the total energy of the flow [16]. 

4.  Results and discussion 
In the Cz flow, the most important driving forces are i) the centrifugal force due to the crystal rotation 
(Figure 3(a)); and ii) the buoyancy force due to the temperature gradient (Figure 3(b)). As a result of 
the combination of the flows induced by these forces and other forces such as the Marangoni 
convection, the flow behaves in a very complex manner in the crucible.  
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Figure 3. Observed patterns, taken with 1 second exposure time, 
 in 2 cSt silicone oil. 

(a) Ra = 0, Re = 5.9×102; (b) Ra = 107, Re = 0. 



 
 
 
 
 
 

 
6

Velocity profiles representing the observed states for different values of Re for a fixed Ra (= 107) 
are shown in Figure 2. Figure 2(a) corresponds to a steady state without temporal variation of the 
velocity, Figure 2(b) corresponds to an oscillatory quasi-periodic state and Figure 2(c) corresponds to 
a turbulent state without periodicity in either space or in time.  

The application of 2D Fourier transforms to the velocity fields of Figure 2 gives the spectra shown 
in Figure 4. Indeed, Figure 4(a) corresponds to a steady state without any oscillations of the velocity; 
Figure 4(b) shows a spectrum corresponding to an oscillatory quasi-periodic state; whereas the 
spectrum of Figure 4(c) corresponds to a turbulent state with large dispersions both in the frequency of 
oscillation (f) and the wavenumber (k), indicating the presence of a large number of temporal and 
spatial modes, which is the characteristic of a turbulent flow.  

So the evolution of these Fourier spectra as a function of Re for a fixed Ra (= 107) clearly shows 
the transition between states leading finally to a turbulent one.  

 
 

 
 

 
 
 
 

Figure 4. 2D power spectra of the velocity profiles of figure 2. Horizontal and vertical axes are the 
frequency (f) and wavenumber (k) axes, respectively. Ra =107.  

(a) steady state (Re  = 7.1×102), 
(b) quasi-periodic state (Re = 1.2×103), 

(c) turbulent state (Re = 2.9×103). 
 
The correlation function shown in Figure 5, corresponding to the velocity profile at  Re = 2.9×103, 

was observed to globally decrease and is expected to vanish for a longer period of time, that is, 
indicating a loss of correlation of the system which is a characteristic of a turbulent state. 
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Figure 5. Temporal correlation function of the velocity profile corresponding to 

the turbulent state (Re = 2.9 103). 
 
Once a turbulent flow is recognized, it is interesting to estimate the number of modes that may 

produce such behaviour. For this purpose, we applied the KL decomposition. The cumulative energy     
R (p) versus p is shown in Figure 6 for different values of Re and Ra. Clearly, R (p) reaches 90 % of 
the total energy at lower p values as Re is increased.  

The opposite was found with increasing Ra. This means that Dkl decreases as Re is increased      
(Dkl = 38 for Re = 1.8×103 and Dkl = 4 for Re = 2.9×103 for Ra = 107) , and increases with Ra (Dkl = 38 
for Ra = 107 and   Dkl = 57 for Ra = 7.2×107 for Re = 2.9×103 ). We can conclude that the rotation 
effects are stabilizing the flow, and the gradients of temperature have a destabilizing role. Indeed, 
more modes and oscillations are involved when the buoyancy effects (Ra number) are increased.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The cumulative energy R (p) versus p for various Re and Ra. 

5.  Conclusions 
The proper orthogonal decomposition is a fruitful tool to study the Czochralski flow. In this 
preliminary study of the transition mechanisms between states in a model of this flow, steady, quasi-
periodic and turbulent flows were successively observed as the Reynolds number was increased, for a 
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fixed Rayleigh number. The different states were recognized using the velocity profiles, their 2D 
Fourier spectra and a correlation function. 

The number of modes involved in the dynamics was estimated using the KL decomposition. This 
method provides also information on the most important modes. The large rotation rates of the crystal 
were found to stabilize the flow, and conversely the temperature gradients destabilized the flow.  
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