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Abstract

It has been noted that the scale-by-scale distribution of kinetic
energy in a turbulent flow is more readily observed in spectral
space, usingE(k), than in real space, using the second-order
structure function. For example, the 5/3rds law is usually easier
to identify in experimental data than the equivalent 2/3rds law.
We argue that this is not an implicit feature of a real-space de-
scription of turbulence. Rather, it is because the second-order
structure function mixes small and large-scale information. In
order to remedy this problem, Davidson[1] introduced a real-
space function,V(r), which plays the role of an energy density
function, somewhat analogous toE(k). In this paper we exam-
ine data taken in a variety of flows and determine the form of
V(r) in intermediate Reynolds number turbulence. We find that
dissipation-range phenomena, such as the bottleneck effect, and
the energy injection range are clearly evident in the signature
function, but are absent in the structure function.

A Problem with the second-order Structure Function.

There are two common methods of describing how kinetic
energy is distributed amongst the hierarchy of eddy sizes in
isotropic turbulence. These are the three-dimensional energy
spectrum,E(k), and the second-order structure function, de-
fined as,

〈
[δu(r)]2

〉
=

〈
[ux (x+ rêx)−ux (x)]2

〉
.

The utility of the energy spectrum rests, in part, on three useful
properties ofE(k):

1. it is positive;

2. it integrates to give the kinetic energy; and

3. a random distribution of eddies of fixed sizele produces
an energy spectrum of the form,

E(k)∼
〈

u2
〉

le(kle)4exp
[
−(kle)2/4

]
,

which exhibits a peak atk ∼ π/le (see, for example,
Ref.[1]).

The first two properties tells us that we may regardE(k) as an
energy distribution in spectral space, while the third suggests
that we may loosely associate eddy size withπ/k, at least in
the rangeη < π/k < l , wherel andη are the integral and Kol-
mogorov scales[2], respectively.

The second-order structure function can also be used to de-
scribe the distribution of energy over different scales. How-
ever, it has profound limitations, as we now show. The usual

explanation for using
〈
[δu(r)]2

〉
as a measure of energy den-

sity is the following. Eddies of size much less than the sepa-
ration r can induce a large signal atx or x’ = x + rêx, but not

at both points simultaneously. Thus eddies smaller thanr tend
to induce a contribution to[δu]2 which is of the order of their
kinetic energy. On the other hand, eddies much greater than
r tend to produce similar velocities at bothx and x’ , and so
make little contribution to the velocity difference,δu. So we
might think of the structure function as a sort of filter, suppress-
ing information from eddies of size greater thanr. Given that
3
4

〈
[δu]2

〉
→ 1

2

〈
u2

〉
for larger we might expect that,

3
4

〈
[δu(r)]2

〉
∼ [energy in eddies of size< r]

∼
∫ ∞

π/r
E(k)dk, (1)

and indeed such estimates are commonly made[3]. This led

Townsend[3] to proposeVT (r) = d
〈

3
4 [δu]2

〉
/dr (the subscript

T to indicate Townsend) as a kind of energy density which plays
a role analogous toE(k). However, this is a deeply flawed view.
Eddies whose sizes are much greater thanr produce a contribu-

tion to 3
4 [δu]2 of the order of34

〈
(∂ux/∂x)2

〉
r2 = 1

10

〈 1
2ω2〉 r2,

so that we should replace Eq. (1) by the estimate,

3
4

〈
[δu(r)]2

〉
∼ [energy in eddies of size< r]+

(
r2/10

)

×[enstrophy in eddies of size> r]. (2)

Indeed it is readily confirmed, using the transform pair which

relatesE(k) to
〈
[δu(r)]2

〉
, that a good approximation to the

relationship between these two quantities is[1],

3
4

〈
[δu(r)]2

〉
≈

∫ ∞

π/r
E(k)dk+(r/π)2

∫ π/r

0
k2E(k)dk, (3)

which is precisely what we would expect from Eq. (2) [see
Ref.[1] for a more detailed discussion of the progression from

Eq. (1) to Eq. (3)]. Thus
〈
[δu(r)]2

〉
mixes large- and small-

scale information, as well as information about energy and en-
strophy. It follows thatVT(r) is not a satisfactory estimate of the
kinetic energy density. This failure ofVT(r) led Davidson[1] to
introduce a new function, called thesignature function, which
seeks to eliminate the large-scale information contained in Eqs.
(2) and (3).

An Alternative to the Structure Function: The Signature
Function.

The signature function is defined for isotropic turbulence only.
It is:

V(r) =−1
2

r2 ∂
∂r

1
r

∂
∂r

{
3
4

〈
[δu(r)]2

〉}
. (4)

It may be shown thatV(r) has the following properties[1]:



1. ∫ r

0
V(r)dr ≥ 0;

2. ∫ ∞

0
V(r)dr =

1
2

〈
u2

〉
;

3. a random distribution of eddies of fixed sizele gives rise
to the signature function,

V(r)∼
〈

u2
〉

l−1
e (r/le)3exp

(
−r2/l2e

)
,

which has a peak aroundr ∼ l .

If we compare these properties with those ofE(k) we see that,
like the energy spectrum,V(r) may be thought of as an energy
density, withr interpreted as eddy size. The formal relationship
betweenE(k) andV(r) is readily shown to take the form of a
Hankel transform[1],

rV (r) =
3
√

π
2
√

2

∫ ∞

0
E(k)(rk)1/2J7/2(rk)dk, (5)

from which it may be shown that,

rV (r)≈ [kE(k)]k=π̂/r ,

whereπ̂ = 9π/8. For example, the difference betweenrV (r)
and [kE(k)]k=π̂/r can be shown to be less than 4% for power-
law spectra of the form[1],

E = Akn, −2 < n < 1.

One illustration of this is the 2/3rds law,
〈
[δu(r)]2

〉
= βε2/3r2/3, (6)

(whereβ is the Kolmogorov constant andε the mean turbulent
energy dissipation rate) whose spectral equivalent is

E(k) = 0.761βε2/3k−5/3.

In terms ofV(r) we have, from Eq. (4),

rV (r) =
1
3

βε2/3r2/3 = 1.016[kE(k)]k=π̂/r . (7)

The aim of the present work is to evaluateV(r) for data taken
from various flows. We will demonstrate thatV(r) is a superior

diagnostic tool to
〈
[δu(r)]2

〉
for examining the energy structure

of turbulence in the scale rangeη < r < L. Although this paper
limits itself to “second-order” quantities, it is possible to define
“higher-order” signature functions[1, 4]. For example, the nat-
ural progression fromV(r) is to define a signature function that,
in some way, corresponds to the turbulent kinetic energy trans-
fer flux and is comparable to the third-order structure function.

An Analytical Example

A simple example which demonstrates the utility of Eq. (4) is
the following. Batchelor[5, 6] introduced a model expression
for the second order structure function in the equilibrium range.
It is exact in the limitr ¿η andr Àη, and interpolates between
these limits. It is:

15
〈
[δu(r/η)]2

〉
/u2

κ =
(r/η)2

[
1+(15β)−3/2 (r/η)2

]2/3
, (8)

where η
(
≡ ν3/4ε−1/4

)
and uκ

(
≡ ν1/4ε1/4

)
are the Kol-

mogorov length and velocity scales respectively. Figure 1
shows both Eq. (8) [withβ = 2.06[10]] and 3 times Eq. (4)
normalized byε2/3r2/3. A viscous bottleneck effect[11, 12, 13]
is clearly observed for the signature function in the cross-over
region between the dissipative and inertial ranges. In the dissi-
pative range, the signature function, unlike the structure func-
tion, quickly decays to zero asr/η → 0. Both functions begin
to display the required 2/3rds scaling from the same value of
r/η≈ 100.
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Figure 1: Curves of3rV (r) and
〈
[δu(r)]2

〉
, normalized by

ε2/3r2/3 and plotted againstr/η, for Batchelor’s parametric

form, Eq. (8). ——–,3rV (r); – – – –,
〈
[δu(r)]2

〉
.

The Experimental Determination of the Signature Function.

The Experimental Data

The experimental data used for the present study are measure-
ments made in fully developed turbulent wakes flows. Detailed
experimental conditions can be found in Refs. [7, 8, 9] and need
not be repeated here. The majority of data is acquired in a sim-
ple inexpensive geometry, which we call aNORMAN grid, that
“stirs” vigorously on large scales. The geometry is composed of
a perforated plate superimposed over a bi-plane grid of square
rods. The grid is located in a blow-down wind-tunnel[7] of test
section dimensions35× 35 cm2 and2 m length. The central
three rows of the original bi-plane grid (mesh sizeM = 50mm,
original solidityσ = 33%) have alternate meshes blocked (final
σ = 46%). As well as theNORMAN grid geometry, normal
plate and circular cylinder wake data are re-evaluated here with
original details also found in Ref.[7]. The measurements are
made on the centreline of the wake formed behind each geom-
etry at a downstream measurement station ofx/d≈ 40. For all
flows, signals ofu are acquired on the mean shear profile cen-
treline.

All data are acquired using the constant temperature anemom-
etry (CTA) hot-wire technique with a single-wire probe made
of 1.27µmdiameter Wollaston (Pt-10% Rh) wire. The instanta-
neous bridge voltage is buck-and-gained and the amplified sig-
nals are low-pass filteredfl p with the sampling frequencyfs
always at least twicefl p. The resulting signal is recorded with
12-bit resolution. Throughout this work, time differencesτ and
frequenciesf are converted to streamwise distancer (≡ τU)
and 1-dimensional longitudinal wavenumberk1 (≡ 2π f/U)
respectively using Taylor’s hypothesis. The mean dissipation
rateε is estimated assuming isotropy of the velocity derivatives



i.e.ε≡ εiso = 15ν〈(∂u/∂x)2〉. We estimate〈(∂u/∂x)2〉 from the
average value ofE1D(k1) [the 1-dimensional energy spectrum
of u such thatu2 =

∫ ∞
0 E1D(k1)dk1] and from finite differences

〈(∂u/∂x)2〉 = 〈ui+1− ui〉2/(U fs)2. For most of the data, the
worst wire resolution is≈ 2η whereη is the dissipative length

scale≡ ν3/4ε−1/4
iso . We have chosen not to correct for the de-

crease in wire resolution that is associated with an increase in
Rλ, since all methods known to us rely on an assumed distri-
bution for the 3-dimensional energy spectrum. For most of the
data, the worst wire resolution is≈ 2η. For theNORMAN grid
data, the worst wire resolution is≈ 4η.
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Figure 2: TheReλ dependence of (a),
〈
[δu(r)]2

〉
; and (b),〈

[δu(r)]2
〉

normalized byε2/3r2/3 and plotted againstr/η, for

NORMAN grid turbulence over the rangeReλ = 200− 400.
The↗ arrow points in the direction of increasingReλ.

Results

Figures 2 and 3 show theReλ dependence of
〈
[δu(r)]2

〉
and

3rV (r) respectively. The data are calculated from the measure-
ments made in theNORMAN grid experiment[8, 9] over the

rangeReλ = 200−400. Figure 2(a) shows that
〈
[δu(r)]2

〉
∼ r2

asr → 0 and
〈
[δu(r)]2

〉
∼ r2/3 in the inertial range while Fig-

ure 3(a) shows that3rV (r)∼ r4 asr → 0 and3rV (r)∼ r2/3 in
the inertial range. The scaling behavior in the rangeη¿ r ¿ L
can be more easily gleaned from Figs. 2(b) and 3(b). For
both quantities,Reλ dependent behaviors are observed. The
signature function has a higher amplitude at large Re, and has
acquired the characteristic double hump shape seen in energy
spectra, e.g. see Fig. 5 in Ref. [14]. This second hump occurs
in the region ofr ≈ L.

In Figure 4 we compare3rV (r) and
〈
[δu(r)]2

〉
, both normal-

ized byε2/3r2/3, for NORMAN grid turbulence atReλ = 255.
According to Eq. (7) the inertial range in such compensated

plots should show up as a plateau with a numerical value equal
to β. It is clear that, because of the modest value ofReλ, only
a limited inertial range is discernable in the signature or struc-
ture functions. Never-the-less, the expected overshoot in en-
ergy at the junction of the inertial and dissipation ranges shows
up clearly in the signature function, though not in the structure
function. The cause of this overshoot, which has become known
as the bottleneck effect[11, 12, 13], are the viscous forces[1].

Figure 5 shows compensated plots ofrV (r) for NORMAN grid
turbulence(Reλ = 255) and for wakes behind a plate(Reλ =
248) and a cylinder(Reλ = 254). This time we use a linear plot
and restrict ourselves tor < L, which corresponds tor/η∼ 300.
The inertial range shows up more clearly in these plots, with
a Kolmogorov constant of aroundβ ≈ 2.0 in good agreement
with the consensus value[10]. More details of the experimental
determination ofV(r) may be found in Ref. [4].
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Figure 3: TheReλ dependence of (a),3rV (r); and (b),3rV (r)
normalized byε2/3r2/3 and plotted againstr/η, for NORMAN
grid turbulence over the rangeReλ = 200−400. The↗ arrow
points in the direction of increasingReλ.

Final remarks and conclusions

We have explored the utility of the signature functionV(r) as

an alternative to the structure function
〈
[δu]2

〉
in describing

turbulent kinetic energy in real space. At small separationsr,

the signature functionV(r), unlike
〈
[δu]2

〉
, captures the bot-

tleneck behavior seen in Fourier space[11, 12, 13]. At larger,
e.g. r = L, the signature functionV(r) indicates the region of
large scale energy input. For the range ofReλ investigated in
the present workV(r) clearly indicates that the large and small
turbulent scales have insufficient separation for a “true” inertial
range to exist.
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Figure 4: Curves of3rV (r) and
〈
[δu(r)]2

〉
, normalized by

ε2/3r2/3 and plotted againstr/η, for NORMAN grid turbu-

lence,Reλ = 255. ——–,3rV (r); – – – –,
〈
[δu(r)]2

〉
. The first

↑ arrow indicates the average size of a dissipative structure and
the second↑ arrow indicates the integral length scaleL.
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Figure 5: Compensated plots of3rV (r) for: ——–, plate wake
turbulenceReλ = 248; – – – –, Cylinder wake turbulenceReλ =
254; and — – —,NORMAN grid turbulenceReλ = 255.
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