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Abstract

A number of different models have previously been developed
to describe the collective oscillatory behaviour of gas-filled bub-
bles in a liquid medium. In this paper we perform an eigenanal-
ysis on two mathematical models and discuss which is more
physically realistic for the case of a chain of bubbles. The modal
structures of both a bubble chain and bubble array are investi-
gated, as well as the corresponding complex eigenfrequencies.
For the case of two spherical bubbles located between two rigid
parallel plates, we show how the eigenfrequencies change as the
plate spacing is varied.

Introduction

Much work has been done towards the development of a model
to describe the oscillations of gas bubbles in a liquid domain
[1, 2, 3, 4, 5, 6], mostly analysing pairs of bubbles. The
acoustically-coupled volumetric oscillations of bubbles are rele-
vant in many fields, such as process engineering, ocean physics,
microtechnology and medicine. Two different models for an
arbitrary number of bubbles will be considered in this paper.
The first model follows from work done by Manassehet al [8],
which has been developed for the particular case of a chain of
bubbles. The second model, what we will call the standard
model, is a simplified version of Feuillade’s model [7], based
on the theory of Tolstoy [2], and is applicable for any general
configuration of bubbles. Both models appeared capable of pre-
dicting basic experimental trends [8, 9]. The models are dis-
cussed in the theory section of this paper. Numerical solutions
for the eigenmodes and eigenfrequencies of a bubble chain are
generated using each model. The results are compared and con-
trasted so that the most physically realistic model can be used.

We then look at an array of bubbles using the simplified stan-
dard model. A few modal structures are shown graphically, for
the case of a square array of bubbles. The standard model is
then modified to account for the presence of two rigid parallel
plates between which two bubbles are trapped. The plates are
modelled using the method of images. Using this very simplis-
tic approach, we show that as the plates are brought together,
the resonant frequencies (symmetric and asymmetric) decrease,
which follows from work done by Strasberg [10]. The paper
concludes with a summary of findings and outlines further work
that is presently underway.

Theory

All the models used in this paper can be written in the following
form:

MẌ +CẊ +KX = 0, (1)

whereM , C, andK represent inertial, damping, and stiffness
matrices respectively andX is related to a differential bubble
radius (i.e., the difference between the instantaneous and equi-

librium bubble radii). Each model described below represents a
system of second order differential equations with constant co-
efficients, the solution of which is harmonic in nature. Further-
more, equation 1 is a homogeneous equation (there is no driving
term on the RHS) since we only require the natural frequencies
and natural modes of a given bubble configuration. The coef-
ficient matrices are determined by the assumptions made about
the coupling between bubbles in the chain. For simplicity, it is
assumed that all bubbles have equal radii.

Model 1

This is the model proposed by Manassehet al [8]. To enable
comparison with the standard model, equation 4 of [8] is repro-
duced here, and called Model 1A,

δ̈i +bi δ̇i +ω2
0iδi =−∑

j 6=i

R0

sji

(
ω2

0 j δ j +b j δ̇ j

)
, (2)

whereδ is the change in bubble radius from an equilibrium ra-
diusR0, b = ω2

0R0/c is a radiative damping term,ω0 is the ra-
dian frequency of a single, linearly oscillating spherical bubble
in an unbounded liquid,sji denotes the spacing between centres
of bubblesi and j, andc is the speed of sound in the liquid.

Model 1 was derived by assuming the coupling is due to the
monopole superposition of the pressures from other bubbles.
The bubbles can in principle have finite radii, whereas in the
standard model, the bubbles are essentially point sources. Fur-
thermore, there are no coupling terms arising from the veloc-
ity fields of neighbouring bubbles. In the course of Model 1’s
derivation, the liquid was first assumed to have a finite com-
pressibility, and the compressibility was then made negligible.
However the sign of the coupling term was negative because
the bubbles were assumed from the outset to oscillate in a per-
fectly incompressible liquid. This appears to be an inconsis-
tency, but since Model 1A had predicted experimental data, it
was not clear if Model 1A was inappropriate. A self-consistent
version is Model 1B,

δ̈i +bi δ̇i +ω2
0iδi = ∑
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)
, (3)

and in this paper, both 1A and 1B will be analysed to judge
which is more appropriate.

Model 2

The model developed by Feuillade [7] was simplified by assum-
ing that the acoustic wavelengths are much larger than the spac-
ing between bubbles (effectively also neglecting liquid com-
pressibility). Equation 7 in [7] has also been arranged to have
the same form as equations 2 and 3 above, yielding:

δ̈i +bi δ̇i +ω2
0iδi =−∑

j 6=i

R0

sji

(
δ̈ j

)
. (4)



Feuillade couples each bubble by scattered pressure fields from
all other bubbles and then relates the pressure to the inertial
mass of each bubble. This effectively couples the bubbles by
velocity fields assumed continuous throughout a multiphase do-
main. Inherent in the model is that the bubbles act as radiating
point sources. The pressure due to damping stress from other
bubbles is not included. As an aside, this model is identical to
that of Hsiaoet al [5] when damping is neglected.

Numerical Method

A computer program was developed to find the eigenvalues
(eigenfrequencies) and eigenvectors (eigenmodes) for a system
of differential equations of the form given by equation 1. To
do so, the system of equations was converted into state-space
coordinates of the form:

Ż = AZ , (5)

where

Z =
[

X
Y

]
, Y = Ẋ, A =

[
0 1

−M−1K −M−1C

]
. (6)

The program makes use of the numerical routines inNumeri-
cal Recipes in Cas well asCLAPACKroutines and libraries to
calculate the eigenvalues and eigenvectors of equation 5. The
required output was coded in C so as to produce a MATLAB-
readable file (i.e., an M-file). The M-file was run in MATLAB
to produce the plots shown in this paper.

The program reads an input file containing parameters of in-
terest (e.g. bubble size, bubble separation, number of bubbles
in the chain, etc.), creates the coefficient matrices from these
values and according to the desired model, constructs the state-
space matrix, then calculates the eigenvalues and eigenvectors.

Chains of Bubbles

A number of interesting plots were generated to show the sim-
ilarities and differences between the models using a chain of
bubbles. Firstly, the program was tested for the case of an un-
damped two-bubble chain to see if it reproduced the analytic
natural frequencies. Once the numerical output was verified,
the chain was extended to thirty bubbles, and plots of the modal
structures were generated.

Two-bubble Chain

For Model 1A the analytic low-frequency eigenmode is given
by, ω1 =

√
(1−R0/s)ω0, while the high-frequency mode is

given by,ω2 =
√

(1+R0/s)ω0. For the standard model,ω1 =
ω0/

√
(1+R0/s) andω2 = ω0/

√
(1−R0/s). Figures 1 and 2

show the agreement between the analytical expressions and the
numerical values generated by the program, as a function of the
ratio of bubble separation to bubble radius, for each model.
As expected, figures 1 and 2 have the same general behaviour.
The most important point is that the models break down when
the bubbles are brought close together (the two natural frequen-
cies rapidly diverge). In reality the bubbles would coalesce to
form a single, larger bubble. (For a physical intuition behind
the frequency shift of the two modes see [7].)

Eigenmodes for a Chain of Thiry Bubbles

Figures 3 and 4 show the first five consecutive modes with ev-
ery fifth mode shown thereafter, for a chain of thirty bubbles.
A bubble radius of 2.605 mm was used in the computation and
the bubble separation was calculated such that all thirty bubbles
fit within a chain of length 0.535 m. The centreline on each
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Figure 1: Frequency shifts of the natural frequencies for a two-
bubble chain using Model 1A. The horizontal axis represents
a non-dimensional ratio scaled in terms of bubble radii. The
vertical axis scales the modal resonance frequency relative to
the resonance frequency of a single bubble in free space. The
solid lines represent the analytic solutions. The points denoted
“◦” and “∗” are the results from the numerical eigenvalue solver.
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Figure 2: Frequency shifts of the natural frequencies for a two-
bubble chain using Model 2. The same notation as shown in
figure 1 is used.

plot represents the condition where bubble radii are at equilib-
rium. Also note that damping has been neglected since it has
very little effect on the modal structures. Here we see a fun-
damental difference between models. For Model 1A, the low-
est frequency mode corresponds to the most complicated mode
structure, whilst the highest frequency mode corresponds to the
simplest eigenmode (in which all bubbles oscillate in phase).
This is contrary to physical intuition. For the standard model,
however, the opposite is true; the lowest frequency mode corre-
sponds to the simplest eigenmode, whilst the highest frequency
mode corresponds to the most complicated mode. This is true of
most harmonic situations (e.g. harmonics of a plucked string).
When Model 1B is used, the eigenmode structure has a form
consistent with physical intuition, like that of Model 2.

Also worth noting is that the bubbles towards the ends of the
chain oscillate at a lower amplitude than those in the middle.
This is analogous to a system of masses connected by springs,
in which the masses in the middle have more flexibility than
those on the end.
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Figure 3: Modal structures for Model 1A for a chain of thirty
bubbles. A chain height of 0.535 m was used. The lowest fre-
quency mode has the most complicated mode structure. The
highest frequency mode occurs when all bubbles oscillate in
phase.
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Figure 4: Modal structures for Model 2 for a chain of thiry bub-
bles. A chain height of 0.535 m was used. The lowest frequency
mode has the simplest mode structure and corresponds to all
bubbles oscillating in phase.

For each of Models, 1A, 1B and 2, it can be shown that the
low-frequency mode is less damped than the high-frequency
mode. This agrees with physical intuition that low frequency
oscillations generally survive longer than higher frequency os-
cillations; the model of Hsiaoet al [5] predicts the opposite. An
interim conclusion is that Model 2 is both physically realistic
and self-consistent and should be used in preference, although
more comparison with experiment is warranted.

Arrays of Bubbles between Parallel Plates

This section of work is based on the standard model approach to
the coupling between spherical bubbles. This model was used
because it can be easily extended to any configuration of bub-
bles. However, it does mean that the bubbles are modelled as
point sources, and so the model is invalid when the bubbles be-
come too close.

To simulate the presence of top and bottom plates, the method of
images was used. The configuration for the case of two bubbles
is shown in figure 5. The plates are simulated by the presence
of bubble images and therefore act as mirrors. Each bubble im-

Bubble separation, s

Bottom plate

Top plate

B1 top image B2 top image

B1 bottom image B2 bottom image

B1 B2

Plate separation, L

Figure 5: Configuration of the bubble image model for two bub-
bles, B1 and B2.

age is in phase with its respective original (i.e., B1’s top and
bottom images are in phase with itself). Note that only primary
images have been considered. In fact, for a source between par-
allel plates the streamfunction is made up of an infinite series of
images. Neglecting the other images is justified since they are
further away and thus have less effect on the mass loading of
the surrounding fluid.

To generate meaningful results, the first task was to modify
the numerical code developed earlier (for the bubble chain) for
the case of a bubble array with no images. This involved re-
specifying the spacing between each and every bubble so as to
produce an array rather than a chain configuration. An exam-
ple of some of the eigenmodes that can be generated from such
a configuration is shown in figure 6. This plot represents the
situation in which the plates are infinitely far apart.

The standard model was then modified to include the presence
of the bubble images. This meant adding extra inertia terms
(due to the bubble images) to each bubble between the plates.
The result was a set ofN-coupled equations describing the os-
cillation of anN-bubble array between plates. The numerical
code was adapted to take this into account by altering the iner-
tia matrix.

The effect of the plate separation on the resonant frequencies is
best shown for the case of two bubbles. This is shown in fig-
ure 7. As the ratio of plate separation to bubble radius(L/R0)
decreases, the two resonant frequencies decrease. This is sup-
ported by work done by Strasberg [10], in which he looks at the
effect of a rigid boundary on the pulsation frequency of a spher-
ical bubble. An intuitive way of explaining the above result is
that the presence of the bubble images oscillating in phase with
the original bubbles increases the mass loading, retards the mo-
tion and therefore reduces the resonant frequencies [7].

Conclusions

We have performed an eigenanalysis to determine the eigen-
frequencies and eigenmodes of spherical bubbles in both chain
and array configurations. The models assume that the bubbles
are of identical radii and oscillate linearly, remaining spherical
in form. For small ratios of bubble separation to bubble radius,
the models clearly break down.

In comparing the two models, it has been noted that Model 2,
the standard model, assumes that the bubbles act as point
sources, whereas this assumption is not necessary for Model 1.
From a physical point of view, both models agree with the
intuition that lower frequency oscillations survive longer than
higher frequency ones. However, considering the eigenmode
structures for a chain of bubbles, Model 2 agrees with what is
generally seen in nature (the lowest frequency mode has the
simplest structure and the highest frequency mode the most
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Figure 6: Eigenmode structures for the 1st, 25th and 49th modes
of a 7×7 array of 49 bubbles. This was generated for identical
bubble radii of 2.605 mm and without damping. The spacing
between bubble 1 and bubble 2 is 0.25 m.

complex), whereas Model 1A predicts the opposite. A corrected
version of Model 1, Model 1B, removes this problem. An in-
terim conclusion is that the ‘standard’ Model 2 should still be
used.

For the case of two bubbles bounded by parallel plates, we have
shown that the resonant frequencies decrease as the plates are
brought closer together. However, the analysis becomes inap-
propriate for small plate spacings, where the bubbles would no
longer be spherical. On this note, current work in progress
is aimed at investigating the resonant frequencies of bubbles
which are trapped between parallel plates, not just bounded by
them. Thus the bubbles are shaped more like cylinders than
spheres. This work will hopefully determine what happens to
the resonant frequencies of such bubbles as the plate spacing
is varied. To some extent, the modified standard model for
the case of two bubbles bounded by parallel plates offers some
guidance for this work.
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Figure 7: The resonant frequency curves for the two modes
as plates with dimensionless spacingL/R0 are brought closer
together. This was generated for identical bubble radii of
2.605 mm and without damping.
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