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Abstract

In this paper, the phenomenon of ocean waves propagating over
a sloping beach is re-examined. Unlike previous analytical ap-
proximations, we propose an exact solution for a general case
with arbitrary beach shape. Two different beach shapes are used
as numerical examples. Numerical results demonstrate the sig-
nificant influence of beach shapes on the water surface elevation
and velocity.

Introduction

The phenomenon of ocean waves transformation from offshore
(deep water) to nearshore (shallow water) is particularly impor-
tant for the design and protection of the coastline. This includes
the topics of wave breaking, the stability of the coastline, and
beach nourishment. Also, the transformation of wave energy in
the nearshore region is a dominant factor in the design of coastal
structures.

Since the perturbation technique was first applied to the devel-
opment of ocean waves [12], the symmetric ocean waves in a
uniform water depth has been widely studied since the 1980s.
With the development of computational technique, the wave
phenomenon in a uniform depth is no longer a mystery. How-
ever, in realistic environments, the seabed bottom is varied, the
variation of the seabed bottom will affect the free surface fluc-
tuation from deep to shallow water.

Numerous investigations for the ocean waves propagating over
a sloping seabed have been carried out. Carrier and his co-
author [1, 2] developed a series of analytical solutions for grav-
ity waves propagating on water of variable depth. Their solu-
tions have been limited to a beach with constant slope, although
the solution for a beach with arbitrary bottom was suggested.

To date, the commonly used model for waves propagating over
a sloping seabed is based on the wave model of a uniform depth,
and then apply the conservation of energy flux to solve the wave
fluctuation with varying depth step by step [3, 8]. This type of
approaches cannot represent the effects of seabed bottom slope
in the solution. A few researchers have attempted to directly
take into account of slope in the whole problem [7]. However,
their approaches only limited to the cases with a small slope and
a small relative water depth. Recently, with advance of numer-
ical schemes, the wave propagating over a sloping seabed even
to wave breaking state can be solved numerically. For example,
the parabolic wave model proposed by Li [9] has been widely
used and extended to various situations [4, 10, 13]

Besides analytical approximations, significant advances have
been made in developing mathematical models to describe fully
non-linear and weakly dispersive waves propagating over an
impermeable bottom [5, 6, 11]. Based on the inviscid fluid
assumption, these models reduce the three-dimensional Eu-
ler equations to a set of two-dimensional governing equations,
These equations are usually expressed in terms of the free sur-

face displacements and representative horizontal velocity com-
ponents, which are either evaluated at a certain elevation, or
depth averaged.

In this study, a new analytical solution is developed for the phe-
nomenon of ocean wave propagating over a sloping beach. Un-
like previous analytical approximations, we consider the beach
with an arbitrary shape, rather than linear beach. Two types
of beach shapes are used as examples, and their effects on the
water surface elevation will be investigated.

Theoretical Formulations

Boundary Value Problem

In this study, we consider the the ocean gravity waves propagat-
ing over a sloping beach, as depicted in figure 1. In the figure,
ha is the reference water depth far from the beach, h(x,t) is the
water surface elevation, which is defined by

Figure 1: Geometry of the general propagation problem.

h(x,t) = ho(x)+η(x,t), (1)

where η(x,t) represents the fluctuation of water wave, and ho(x)
is the water depth at the location (x).

Based on shallow water theory [1], the governing equations for
the ocean waves propagating over an incompressible and invisid
fluid can be expressed in Eulerian system as
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+ u
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where u is the velocity in the horizontal direction, t is the time, g
is the gravitational acceleration, and the subscripts ”x” and ”t”
denote the partial differentiation respective to x and t, respec-
tively.



Now, we consider the problem in a Lagrangian system, and
choose ha a the reference height, the relationship between two
co-ordinates is
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. (3)

To simplify the problem, we linearise (3) as,
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Then, the linearised governing equations in a Lagrangian sys-
tem can be expressed as
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To simplify the mathematical expressions, we non-
dimensionalise the whole problem with the following
variables,

(X∗,η∗,h) =
(X ,η,h)

ha
, t∗ =
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√
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where the superscript ”∗” denote the non-dimensional param-
eters. To avoid the complicated mathematical expressions,
the ”*” will be ignored, and all physical variables are non-
dimensional parameters in the following section, unless spec-
ified.

Introducing (6) into (5a) and (5b), the governing equations can
be re-written as
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Analytical Solution

In this paper, we attempt to solve the above governing equations
(7a) and (7b) analytically. Herein, we define a new variable,
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which leads to
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Let C(ε) =
√

ho(X), we have
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in which

R =
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0

ds

C3(s)
and X =

∫ R

0
C3(s)ds (11)

Note that (10a) contains the beach shape function, C(R) =√
h0(X), which describes the variation in the beach profile with

depth. In general, it is difficult to obtain analytical solutions for
equations of the form (10a), However, an exact solution is pos-
sible using the approach of Varley and Seymour [14].

The general solution for (10a) can be expressed as
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The function E and F can be expressed as

E = A(t +R)+B(t −R) (14a)

F = −A(t +R)+B(t −R) (14b)

where A(t + R) is given as the incident wave components, and
B(t−R) is an unknown function, which needs to be determined
later.

To find B, the following boundary conditions are required:

η → 0 as C(R) → 0 (15a)

u bounded as C(R) → 0 (15b)

Using N = 1 as the first approximation, we have
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With the boundary conditions, we have A(t)= B(t), which gives
us



E = A(t +R)+A(t −R) (17a)

F = −A(t +R)+A(t −R) (17b)

If we consider the incident wave A(x,t) as

A(x,t) = A0 cos(
2π
L

(x−ct)) = A0 cos(
2πha

L
(X∗ − t∗)) (18)

where L is the wavelength of incident wave in deep water, A0 is
the amplitude of waves.

Numerical Examples

In this paper, two types of beach profiles are used:

case I: ho(R) = [0.5tanh(0.1R)]4 (19a)

case II: ho(R) = R4 (19b)

Two different beach shapes are plotted in figure 2. As shown in
the figure, Case I represents a case with gentle slope, which is
a function of tanh, while Case II represents a case of rapidly
slope, which is a function of R(x)4. In this study, we use
ha=0.05L as the reference water depth, because we are only
concern with the case of shallow water. In the following dis-
cussion, the non-dimensional variables will be represented with
”*” superscripts.
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Figure 2: Two types of beach profiles.

With the beach profile shown in figure 2, the water surface el-
evations (η/ha) with different beach profile are illustrated in
figure 3(a). As shown in the figure, functions of beach profiles
significantly affect the water surface elevation (η). The distribu-
tion of velocity versus horizontal distance (x/ha) is illustrated
in figure 3(b). Again, significant influence of beach profile is
found.

it is noted that the amplitude of the water surface elevation (|η|)
slowly increases as horizontal distance (x) increases. It is be-
cause the present solution is only valid for the shallow water,
i.e., ha/L < 0.05, which is based on the assumption of shal-
low water expansion. For the cases with intermediate water
and deep water, the conventional Stokes wave theory should be
used.
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Figure 3: Comparison of (a) water surface elevation and (b)
velocity with different beach profiles. (T=0.5)

Conclusions

In this paper, an exact solution for ocean wave propagating over
a sloping beach is derived. In the new analytical solution, an
arbitrary beach shape is considered, which has been assumed to
be a linear function in the past. Two different beach profiles are
used as numerical examples. Numerical results demonstrate the
significant effects of beach profile on the water surface elevation
and velocity profiles.
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