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First of all one must observe that each pendulum has

its own time of vibration, so definite and determinate

that it is not possible to make it move with any other

period than that which nature has given it. On the

other hand one can confer motion upon even a heavy

pendulum which is at rest simply by blowing against

it. By repeating these blasts with a frequency which

is the same as that of the pendulum one can impart

considerable motion.

Galileo Galilei, Discorsi a Due

Nuove Scienze, 1638
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Abstract

The current study consists of two main parts. The first part explores the response

of neutrally buoyant tethered bluff bodies undergoing vortex-induced vibrations (VIV)

using both well-resolved numerical simulations and a restricted series of experiments.

The second part numerically investigates the effect of an elastic tether on the vortex-

induced vibration of buoyant tethered bluff bodies. The bodies chosen for this study

are a circular cylinder and a sphere.

Neutrally buoyant bodies were the focus for the first part of this study because

they represent a special case connecting previous research on vortex-induced vibration

research on bodies at higher and lower mass ratios, and because previous restricted

experimental studies had indicated that the neutrally buoyant sphere underwent fun-

damentally different behaviour.

It is found through numerical experiments that a neutrally buoyant tethered cylinder

exhibits three response regimes (Regime I to III) as the Reynolds number (Re) is

increased from 10 to 300. Relative to the response of non-neutrally buoyant cylinders,

a neutrally buoyant cylinder shows a rapid transition to non-periodic motion as the

Reynolds number is increased.

For a neutrally buoyant sphere, through a combination of numerical simulations

and experiments it is found that there exist seven different response regimes (Regime

I to VII) within the range of Re = 50 − 8000. These regimes were determined based

on changes in the time-mean position of the body, its amplitude and the frequency of

oscillation. Importantly, the present study identifies that the vortex-induced vibration

behaviour of a neutrally buoyant tethered sphere is closer to that of a non-buoyant

sphere tethered in a vertical flow than that of a buoyant sphere tethered in a horizontal

flow, in that both evolve towards quasi-circular motion as the Reynolds number is

increased. Simulations for a buoyant sphere covering a range of the conventional reduced

velocity (U∗), while keeping Re constant, reveal that Re has an effect on the maximum

oscillation amplitude and response branches of vortex-induced vibration of a tethered

sphere. The response is quantified for the restricted parameter space investigated.

In the second part of the present study, the effect of making the tether elastic was

studied by introducing a spring parameter kt, both for the cylinder and the sphere. The

results show that the elasticity of the tether greatly affects the behaviour of both bluff

bodies, and that there is a critical value of kt above which the response is significantly
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different to that of inelastically tethered bodies. When kt exceeds its critical value, the

oscillation amplitude is greatest at low U∗, whereas the amplitude is greatest at high

U∗ for the inelastically tethered case.
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Nomenclature

Symbol Description

§ Thesis section

DES Detached eddy simulation

DNS Direct numerical simulation

DOF Degree-of-freedom

GLL Gauss-Lobatto-Legendre

LES Large eddy simulation

MWR Method of weighted residuals

RMS Root-mean-square

VIV Vortex-induced vibration

∇ Vector gradient operator

F Fourier transform

Fm Fourier transform in the in the cylindrical coordinate φ

α Alpha parameter, π
2

gD
U2 (Cylinder) or 4

3
gD
U2 (Sphere)

Angle of attack

β Beta parameter, 1/m∗

γ Gamma parameter, 2
π

U2

D
(Cylinder) or 3

4
U2

D
(Sphere)

ε Under-relaxation parameter in the predictor-corrector scheme

ρ Density of a fluid

Continued on the next page.
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Continued from previous page.

Symbol Description

Weights of GLL quadrature

ρf Density of a fluid

ρb Density of a body

λ Constant in the Helmholtz equations

µ Absolute or dynamic viscosity of a fluid

ν Kinematic viscosity of a fluid, ν = µ/ρ

ω Angular frequency, 2πf

Ω Computational domain

φ Inclination (azimuthal) angle measured from y axis in yz plane

Φ Test function of MWR

Ψ Weighting function of MWR

ϕ Phase difference or Phase angle

ϑ Layover angle or Angle measured from y axis

θ Tether angle or Angle measured from x axis

ξ GLL quadrature points

A Amplitude of oscillation

Frontal area of a body

A∗ Nondimensionalised amplitude of oscillation

A(xB ,u, p) Acceleration term in the coupled Navier-Stokes equations

B Buoyancy

C1 Cylinder mesh 1

C2 Cylinder mesh 2

C3 Cylinder mesh 3

C4 Cylinder mesh 4

CD Drag coefficient

CPB Base pressure coefficient, pressure at the immediate rear of the body
normalised by 1

2ρU2

CT Force coefficient in the tangential direction to the tether

Continued on the next page.
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Symbol Description

Cx Force coefficient in x direction or Drag coefficient

Cy Force coefficient in y direction or Lift coefficient

Cz Force coefficient in z direction

D Diameter of a circular cylinder or a sphere

Dcircle Diameter of the quasi-circular area of the oscillating sphere in the yz
plane

f Body oscillation frequency

fDrag Oscillation frequency of drag

fn Natural frequency of the system in vacuum

fvo Vortex shedding frequency of a fixed body

fv Vortex shedding frequency of a moving body

fex Body excitation frequency

f∗ Nondimensionalised frequency of oscillation, f/fn

f∗

n Nondimensionalised natural frequency, fnD/U

Ftotal Total force, FP + FV

FP Pressure component of force

FV Viscous component of force

Fx Force in x direction or Drag

Fy Force in y direction or Lift

Fz Force in z direction

Fr Froude number, U/
√

gD

Fr′ Reduced Froude number, U/
√

g(1 − m∗)D

Ftol Tolerance of force convergence

g Acceleration of gravity

Function to be solved in the Helmholtz equations

i Imaginary part of complex numbers

Specific macro element in Spectral-element methods

J Jacobian of the coordinate transformation

k Spring constant for linear spring (restoring) force for the tether

kt Elasticity parameter, 2πU
D

√

mb

k

Continued on the next page.
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Symbol Description

L Tether length

L0 Initial tether length

L∗ Nondimensionalised tether length, L/D

LN Legendre polynomial of order N

L(V) Linear operator in the Navier-Stokes equations, ∇2V

m Body mass

Wave number in Spectral-element methods

mb Body mass

mf Displaced fluid mass

ma Added mass of an accelerating body in a fluid

m∗ Mass ratio, ρb/ρ

N(V) Nonlinear operator in the Navier-Stokes equations, (V · ∇)V

N Number of GLL points

Ma Mach number, ratio of speed of sound to speed of fluid flow

p Kinematic pressure, P/ρf

Order of GLL interpolants

P Pressure

r Cylindrical or spherical coordinate in the radial direction

R Radial offset distance for a tethered sphere

Re Reynolds number, UD/ν

ReS1 Reynolds number of the first transition

ReS2 Reynolds number of the second transition

ReS3 Reynolds number of the third transition

S1 Sphere mesh 1

S2 Sphere mesh 2

S3 Sphere mesh 3

St Strouhal number, fD/U

t Time

T Tether tension

Continued on the next page.
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Symbol Description

Oscillation period

U Velocity of a fluid

u x component of velocity in a non-inertial coordinate

u′ x component of velocity in an inertial coordinate

u Fluid velocity in a non-inertial coordinate

uB Velocity of the oscillating body

um Velocity or pressure Fourier mode in the Helmholtz equations

utol Tolerance of velocity convergence

U∞ Fluid velocity at far-field

U∗ Reduced velocity, U (fnD)

v y component of velocity in a non-inertial coordinate

v′ y component of velocity in an inertial coordinate

V Volume of a body

V Fluid velocity in an inertial coordinate, u + uB

U∞ Fluid velocity at far-field

w z component of velocity in a non-inertial coordinate

w′ z component of velocity in an inertial coordinate

W Weight of a body

x Non-inertial Cartesian coordinate in the streamwise direction

x′ Inertial Cartesian coordinate in the streamwise direction

xB Position vector of the oscillating body

y Non-inertial Cartesian coordinate in the direction transverse to the
flow

y′ Inertial Cartesian coordinate in the direction transverse to the flow

z Non-inertial Cartesian coordinate in the direction lateral to the flow

z′ Inertial Cartesian coordinate in the direction lateral to the flow
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Chapter 1

Introduction

It is well known that a body in a fluid flow can extract energy from the fluid stream and

sustain oscillations of the body itself. These oscillations occur as a result of changes

in the low pressure zone of the fluid at the rear of the body. The shedding of vortices

formed in the wake at high enough flow speed provide an oscillating lift and drag that

lead to vibration of the body, which is known as vortex-induced vibration (VIV).

If the shedding of vortices from the body is of a frequency that is close or equal to the

natural frequency of the body, a resonance condition occurs. Especially for bluff bodies,

this results in large scale oscillations of the structure, and can result in catastrophic

failure. Thus, to overcome these problems, there has been much research activity in

the field of vortex-induced vibration and its controlling mechanisms over the last few

decades, particularly in relation to applications for marine structures and underwater

pipelines, as well as for buildings and bridges. A large number of fundamental studies of

VIV are discussed in the comprehensive reviews of Sarpkaya (1979), Griffin & Ramberg

(1982), and Williamson & Govardhan (2004).

Due to intrinsic instability in the wake of bluff bodies, the vortices begin to peri-

odically shed from alternate sides of the body. As vortices represent a region of low

pressure with respect to the surrounding fluid, this periodic vortex shedding generates a

force on the bluff body, with a periodically fluctuating component that is predominantly

transverse to the free stream direction. This transverse vortex force, together with any

other transverse forces, are often referred to as the lift force experienced by the bluff

body. In this sense, knowledge of the instantaneous fluid forces, i.e. drag and lift, is

crucial in understanding vortex-induced vibration phenomena, and much research has

been devoted to deducing the unsteady fluid forces on oscillating bluff bodies.

Most studies of VIV have focused on a transversely vibrating cylinder. Only a
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few studies have examined other types of VIV and body shapes: such as VIV of a

cylinder with 2 degree-of-freedom (DOF), and VIV of a tethered cylinder and a tethered

sphere. Previous studies on the transversely vibrating cylinder have shown that there

are several physical parameters affecting the amplitude and frequency of the vibration.

Two important parameters are the flow speed and relative body mass to fluid. At low

flow speeds, the wake of a bluff body is steady. Beyond a critical flow speed,the wake

becomes unsteady and vortex shedding commences, resulting in body vibration and the

possibility of a resonance, which is the main concern of VIV. The relative body mass

(so called mass ratio) is related to the range of resonance. It has been identified that

the smaller the mass ratio is, the larger the resonance region becomes. Moreover, the

number of response branches within the resonance is dependent on the mass ratio. A

body that is heavier than fluid exhibits two responsive branches, whereas a light body

shows three branches including a higher amplitude branch.

Two other parameters used in previous studies are the structural damping of the

body in fluid and the Reynolds number. The damping affects the maximum amplitude

of VIV; the lower the damping, the larger the amplitude. However, researchers do

not agree whether the damping combined with the mass ratio (so called mass-damping

ratio) is a suitable parameter to determine the maximum amplitude of VIV. In spite of

this, this parameter has been adopted in some marine engineering studies to determine

the maximum amplitude. The effect of Reynolds number on the amplitude is not clear

due to the technical difficulty, especially in experiments, in isolating its effect from

the effects of several other parameters. However, a few studies have shown that the

Reynolds number does have an effect on the maximum amplitude, and also on the

number of response branches at a given mass ratio. Most VIV studies have focused on

the effect of these parameters on VIV of a transversely vibrating cylinder. However,

the influence of body geometry and method of constraint means that the results for a

transversely vibrating cylinder is not necessarily extendible to the VIV of other cases.

The present study investigates the VIV of neutrally buoyant tethered bodies as a

different type of VIV by varying the mass ratio and the Reynolds number. Although it

is common to see this type of body constraint (i.e., tether) in marine applications, not

many aspects of the motion of a tethered body is understood. Neutrally buoyant bodies

are chosen firstly due to the recent studies of vertically tethered sphere, which indicated

that this body may develop a different type of motion in a fluid flow. Secondly, it may
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represent a special case due to the disappearance of the gravity effect on their motion.

By analysing the responses at various Reynolds number, we first hope to determine

whether the VIV of neutrally buoyant bodies can be explained with the knowledge

having compiled so far, or need to uncover new aspects of this type of VIV, if any. To

focus on the fundamental mechanisms of the VIV of neutrally buoyant bodies and to

relate them to the results of previous studies, two generic bluff bodies are chosen for

the research: a circular cylinder and a sphere.

The other aim of the current dissertation is to study the effect of tether elasticity

on the VIV of a tethered cylinder and sphere. This is inspired by some previous

experimental studies on the VIV of a cylinder freely oscillating in both the streamwise

and transverse directions, which reported a new responsive branch characterised by a

very large amplitude. Moreover, there has been no study (to the author’s knowledge) on

the VIV of elastically tethered bodies which might be the case closer to some realistic

engineering applications. It is anticipated that the introduction of elasticity to the

tether, which introduces one more DOF to the motion, will have a considerable effect

on the body response, as occurred in the case of cylinder VIV with 2 DOFs. The

body dynamics and flow structures of the inelastically tethered body and elastically

tethered one will be compared. An additional parameter representing tether elasticity

is suggested and used to interpret the results.

The thesis consists of 6 chapters in addition to the Introduction. In chapter 2, a

critical review of studies of the flow past a fixed bluff body and of VIV of an oscillating

body is presented. Chapter 3 provides details of the numerical method, its validation,

and the experimental method adopted in the study. Three results chapters, comprising

the main part of the thesis, follow. Chapter 4 deals with the VIV of a neutrally buoyant

tethered cylinder. Chapter 5 presents detailed results for a neutrally buoyant sphere and

discusses the effects of mass ratio and the Reynolds number on its VIV. In chapter 6,

a parameter for the tether elasticity is introduced and its effect on the dynamics of the

tethered cylinder and sphere is discussed. Finally, the conclusions and recommended

future work are presented in chapter 7.
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Chapter 2

Literature Review

As the flow structures and the vortex shedding patterns of bluff bodies are closely

related to vortex-induced vibration (VIV), the literature on the flow past bluff bodies

at rest is reviewed here first. The generic bluff bodies of a circular cylinder and a sphere

are chosen as they have been extensively studied owing to their geometric simplicity

and broad application in engineering. Studies on the motion of bubbles in a fluid flow

will be reviewed due to the possible link to the motion of a sphere, followed by a review

of vortex-induced vibration of cylinders and spheres.

2.1 Flow past a Stationary Circular Cylinder

Flow structures shed from fixed two-dimensional bluff bodies and wake transitions

have been of interest to researchers for many decades. The geometrical simplicity

of a circular cylinder led to a highly studied two-dimensional body which depends on a

simple parameter, its diameter D. When a cylinder is immersed in an incompressible

Newtonian fluid, the Reynolds number, Re = UD/ν, is the sole governing parameter

on which the flow regimes are dependent. Here, U is the flow velocity, D is the cylinder

diameter, and ν is the kinematic viscosity of the fluid. The Reynolds number is the

ratio of inertial to viscous forces. As Re is increased from zero towards infinity, the flow

undergoes a series of transitions from steady two-dimensional flow, through unsteady

and three-dimensional flow, to fully turbulent flow. A comprehensive review of the

work on the circular cylinder is provided by Williamson (1996a).

2.1.1 Two-dimensional steady flows

For very low Reynolds numbers (where Re < 1), viscous forces dominate the flow. The

flow does not separate from the surface of the cylinder, but remains completely attached,
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and the flow streamlines appear identical upstream and downstream of the cylinder.

This flow is sometimes called creeping flow. An example of such a flow is shown in

figure 2.1(a). This symmetrical pattern is also observed in analytical solutions of the

flow past a cylinder with potential flow theory. While the flow pattern of potential

flow looks very similar to that obtained with creeping flow, the solution leads to the

conclusion that the cylinder should experience no drag force, a conclusion known as

d’Alambert’s paradox (Roshko 1993). This zero drag conclusion is wrong, as the drag

coefficient, CD, is at its highest when Re goes to zero. This problem was overcome

by Stokes, whose equations considered viscous effects. Stokes’ treatment of the flow

around a sphere analytically obtained the forces on a pendulum ball in creeping flow

(Stokes 1851). For this reason, such creeping flow is often referred to as Stokes flow.

Stokes flows, being governed by a set of linear equations, have the property of being

reversible, so that if the flow and external forces are reversed, the flow returns exactly

to its original state.

Stokes flow around a circular cylinder persists only at very small values of Re, until

the first of a series of transitions occurs. This is the transition to separated flow, when

a recirculation region forms at the rear of the cylinder. An example of this steady,

separated flow is shown in figure 2.1(b). This separation occurs at Re = 5 (Taneda

1956; Noack & Eckelmann 1994). The flow is no longer reversible, and convection

effects cannot be ignored. With increasing Re, the length of this recirculation region

increases (Taneda 1956; Roshko 1993). This trend continues until Re = 46 (Taneda

1956; Roshko 1993; Dušek et al. 1994; Williamson 1996b; Thompson & Le Gal 2004). At

this limit, the flow undergoes its second major transition to an unsteady, time-periodic

flow. This type of transition, from a steady flow to a time-periodic flow, is known as

(a) Creeping flow, Re < 5 (b) Separated flow, Re = 26

Figure 2.1: Flow regimes around a fixed circular cylinder where the flow is steady and

two-dimensional. Images taken from Van Dyke (1982).
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a Hopf bifurcation (Hopf 1942). Analysis shows that this transition obeys very closely

the Stuart-Landau model (Stuart 1958, 1960), and that this transition is supercritical,

having no hysteresis (Provansal et al. 1987).

2.1.2 Two-dimensional unsteady flows

The transition from a steady flow to a time-periodic one is probably the most important

transition in cylinder wakes with respect to vortex-induced vibration because of the

inception of laminar vortex shedding. The vortices are shed in turn from alternate

sides of the cylinder. This periodic shedding causes a periodic force on the cylinder,

the transverse component of which is responsible for exciting crossflow oscillation of

elastically-mounted cylinders. The shed vortices organise themselves into a two-row

configuration, known as the Kármán or Bénard-von Kármán vortex street, so called

because of the early observation of this street by Benard (1908) and the observation

and analysis of the configuration by von Kármán (1911). A classic example of the

Kármán vortex street is shown in figure 2.2.

The frequency of the vortex shedding, where the flow remains laminar and two-

dimensional, is a function of the Reynolds number. Further, this frequency can be

expressed as a non-dimensional quantity known as the Strouhal number St = fvoD/U ,

where fvo is the frequency of vortex shedding, D is the cylinder diameter, and U is the

freestream velocity. This dimensionless group was first suggested by Rayleigh (1879),

to collapse the data presented by Strouhal (1878) in a study of Aeolian tones from

cylindrical strings.

Roshko (1954) proposed a functional fit of St versus Re for Re < 1000. How-

ever, there was considerable spread in the data, especially for Re in the range of

Figure 2.2: The Bénard-von Kármán vortex street behind a circular cylinder at Re = 65

(taken from Provansal et al. (2004)).
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90 < Re < 350, and it was suggested by Tritton (1970) that there was a “low-speed”

mode of shedding for Re < 105, and a “high-speed” mode for Re > 80. This suggestion

was because of an apparent discontinuity in the St-Re curve at Re ≈ 100. This discrep-

ancy was effectively resolved by the discovery of oblique shedding modes by Williamson

(1989), where vortices are shed with their axes not parallel to the axis of the cylinder.

Williamson (1989, 1992) showed that if the Strouhal number was corrected according

to the angle of the oblique shedding, the Strouhal number data collapsed to a single

curve.

This work on oblique shedding modes showed that careful manipulation of the flow

at the ends of the cylinder (such as with end plates or base suction) could induce parallel

shedding. Effectively, this was through decreasing the local stability in the near wake

at the ends of the cylinder (Monkewitz 1996). With the ability to induce parallel vortex

shedding, and methods to correct the Strouhal number for oblique shedding effects, a

new curve fit was suggested by Williamson & Brown (1998) based upon a series in

1/
√

Re extending up to at least Re = 1000. Very close fits could be obtained to the

data, except over the range 190 < Re < 260, which was attributable to the introduction

of the three-dimensional mode A into the wake dynamics, described in section 2.1.3.

Figure 2.3: St-Re curve, taken from Williamson (1988b).
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This discontinuity has long been documented, but has only relatively recently been

attributed to the transition to three-dimensionality (Williamson & Roshko 1988). The

transition marks the start of the path to turbulence in the wake. An example of such

a St-Re plot is shown in figure 2.3.

Vortex shedding is also very robust. While the shed vortices, and the shear and

boundary layers, eventually become turbulent with increasing Re, evidence of vortex

shedding persists up to values of at least Re = 107. This, of course, has ramifications for

vortex-induced vibration, and reinforces continuing importance of the initial transition

to unsteady flow in the cylinder wake.

2.1.3 Three-dimensional unsteady flows

Experiments have shown that the parallel periodic vortex shedding street becomes

unstable to three-dimensional instabilities for Re > 178 (Williamson 1988a, 1996a).

This transition, known as mode A, was studied using linear Floquet stability analysis

(Barkley & Henderson 1996), and it was found that at Re = 188.5, the cylinder wake

becomes unstable to three-dimensional perturbations with a spanwise wavelength of

3.96D, where D is the cylinder diameter (see figure 2.4(a)).

A second instability on the two-dimensional base flow was found at Re = 259, with a

spanwise wavelength of 0.822D (see figure 2.4(b)). These instabilities and their respec-

tive spanwise wavelengths agree well with experimental observations of the saturated

wake structures of the mode A and B instabilities made by Williamson (1988b). Three-

dimensional simulations by Thompson et al. (1995, 1996), amongst others captured

detailed images of the saturated three-dimensional streamwise vortical structures cor-

responding to these two different bifurcations. Henderson (1997) numerically studied

the wake of the circular cylinder by three-dimensional simulations through the mode

A and mode B instabilities. The span of the simulations was varied up to 4 times the

spanwise wavelength of the mode A instability. The interaction between the mode A

and mode B instabilities was studied by monitoring the energy present in the various

spanwise Fourier modes of the simulations. The coexistence of both mode A and mode

B wake structures at Re = 265 was shown by the wake visualisations. This spontaneous

switching between one mode and the other may explain the presence of two distinct

Strouhal frequencies in the wake in the range of Re = 230−260, as shown in Williamson

(1988b).

9



(a) Mode A, Re = 200 (b) Mode B, Re = 270

Figure 2.4: Wake modes of the flow around a fixed circular cylinder where the flow is

unsteady and three-dimensional, taken from Williamson (1996a).

Following the discovery of modes A and B, and their involvement on the path to

turbulence, it seems natural to investigate what other types of modes are possible. As

well as modes A and B, other modes have been shown to be theoretically possible.

Marques et al. (2004) and Blackburn et al. (2005) showed that for flows possessing the

symmetries of the Kármán wake, only three generic bifurcations can arise from the

two-dimensional base flow: the first breaks only the spanwise translational symmetry,

and corresponds to mode A; the second breaks the “space” part of the spatio-temporal

symmetry in the original plane of the flow, and corresponds to mode B; and the third,

and last, breaks the “time” part of the spatio-temporal symmetry, and is represented

by a quasi-periodic mode (mode QP), or a mode that has a different period to the

two-dimensional base flow.

Such a quasi-periodic mode can be found numerically in the fixed cylinder wake

(Blackburn & Lopez 2003). It is predicted to occur around Re = 377, and so is not ob-

served in experiments, as the base flow is far from two-dimensional by this stage. How-

ever, experiments by Zhang et al. (1995) with an upstream tripping wire excited a mode

with a similar wavelength to this quasi-periodic mode, in the Reynolds number range

170 ≤ Re ≤ 270. The experiments of Zhang et al. (1995) and the restricted-domain

simulations of Karniadakis & Triantafyllou (1992) demonstrated that relatively passive
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measures could be used to act on the inception order of the three-dimensional modes,

even if there is only a small number of possible transition types involved (Marques

et al. 2004; Blackburn et al. 2005). It is therefore plausible that an oscillating cylinder,

such as that which occurs during vortex-induced vibration, will have a different mode

inception order and different path to wake turbulence than a fixed cylinder.

2.1.4 High Reynolds number flows

As the Reynolds number is increased further, the disorder of the wake increases as full

turbulence is approached. This occurs because of the presence of a series of fundamental

instabilities of the shear flow. The first of these is an instability of the free shear layer,

which is a Kelvin-Helmholtz instability, that causes the shear layers to become wavy.

The transition point from laminar to turbulent flow in the shear layer moves upstream

toward the cylinder with increasing Re. The shear layers can also develop some three-

dimensionality.

At Re > 2×105, the so-called drag crisis is encountered, where the average drag force

is suddenly reduced. This occurs due to the fact that a separation-reattachment bubble

is formed by the shear layer. The reattached boundary layer then finally separates

much further towards the rear of the cylinder, resulting in a narrow wake, hence lower

Figure 2.5: CPB-Re curve, taken from Williamson (1996b).
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form drag (Williamson 1996b) and a significantly lower base suction coefficient. The

sudden drop in base suction is well-illustrated in figure 2.5. The Re at which this

occurs is classically referred to as critical, with subcritical flow comprising no separation

and reattachment, and supercritical flow occurring at Re higher than that where the

separation-reattachment bubble is formed. However, vortex shedding is still present.

An example is shown in figure 2.6.

(a) Re = 1 × 104 (b) Re = 2.7 × 105

Figure 2.6: Vortex streets behind a fixed circular cylinder where the flow is turbulent, taken

from Williamson (1996b).

As Re is further increased, the forming boundary layers themselves become fully

turbulent. It was originally envisaged that this would mark the end of any periodicity in

the wake, as vortex shedding gave way to a completely turbulent wake fed by turbulent

boundary layers. However, periodicity has been detected at Reynolds numbers above

this limit, further emphasising the importance of this initial transition.

2.2 Flow past a Stationary Sphere

The flows around another widely studied bluff body, the sphere, are remarkably dif-

ferent to those of the circular cylinder, as the Reynolds number is increased. A major

difference is in the wake transition behaviour. The wake of a sphere becomes asym-

metrical prior to a transition to unsteady flow, whereas the cylinder wake becomes

unsteady before asymmetric structures appear in the wake (Williamson 1988b).

2.2.1 Steady axisymmetric flow

Attached flow

One of the earliest analytical studies of the flow past a sphere was performed by Stokes

(1851) as part of a study into the resistance on the motion of a pendulum. Stokes

solved equations of motion which excluded advection, but included viscous diffusion,
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and assumed a no-slip condition at the sphere surface. The solution of this problem

represents the low velocity limit of the flow of a viscous incompressible fluid past a

sphere as Re approaches zero. Stokes flows exhibit a remarkable property known as

reversibility, as mentioned in section 2.1.1. For reversible flow past a symmetrical body

such as a sphere, the flow streamlines are symmetrical both upstream and downstream

of the body, as shown in figure 2.7(a). Despite efforts to gain a better analytical

description of the far wake of the flow past a sphere over the century following the

work of Stokes, it has only been since the middle of the twentieth century that many

advancements have been made in the study of the flow past a sphere.

(a) Attached flow, Re = 9.15 (b) Separated flow, Re = 118

Figure 2.7: Steady flow around a fixed sphere where the flow is axisymmetric, taken from

Taneda (1956).

Proudman & Pearson (1957) sought to extend the solution of Stokes to higher

Reynolds numbers. They developed separate locally valid stream function equations

for the flow fields near to and far from the body. This formulation reduced the problem

to a single set of boundary conditions for each expansion; a no-slip boundary at the

sphere surface for Stokes flow, and a uniform stream condition in the far flow field for

Oseen flow.

Further efforts were made to extend this analytical description of the flow past a

sphere by Chester & Breach (1969). They extended the analysis of Proudman & Pearson

(1957) from an expansion of order Re2 log Re, to an order Re3 log Re. Consistent with

the previous study, they employed expansions for the inner flow which satisfied the

no-slip condition of Stokes flow, and expansions for the outer flow field which satisfied

the uniform stream condition of Oseen flow.

Chester & Breach (1969) reported that their solution only agrees with experimental

measurements over a Reynolds number range Re = 0−0.5. The limited range over which
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their solution was accurate suggested that an inappropriate form of the expansions

was used, however a more fundamental problem existed: the governing Navier-Stokes

equations provide an often insurmountable obstacle when an analytical solution to a

fluid flow problem is sought. Their method, which divided the flow field into a near

field dominated by viscous diffusion, and a far field dominated by advection, provided

an inadequate description of the flow, as flow features such as separation, asymmetry,

and unsteady flow were suppressed.

The technological revolution of the latter half of the twentieth century brought

about a revolutionary analysis technique known as computational fluid dynamics. In-

stead of deriving solutions to the Navier-Stokes equations with analytical methods,

approximate solutions are obtained with numerical methods. An early computational

study of the flow past a sphere was performed by Rimon & Cheng (1969). Their study

employed a time-dependent axisymmetric stream function/vorticity formulation, with

a finite-difference method used for the spatial discretisation of the vorticity transport

equation, and a second-order central-difference scheme used for space and time integra-

tion. Their work provides early treatment of the difficulties in constructing a pressure

field from vorticity when the velocity field is unknown. Although the computations

were undertaken in an era in which computing power was limited, a relatively small

sphere-to-domain diameter ratio of approximately 1:8.2 (blockage of about 1.5%) was

employed.

Separated flow

The computations of Rimon & Cheng (1969) predicted that the flow past the sphere

remained steady and attached for Re . 25, and for Re & 25, the flow separated from

the rear of the sphere, forming a recirculation bubble, as shown in figure 2.7(b). They

computed a linear relationship between the bubble length and log Re for Re . 150.

They reported a secondary separation of flow for Re ≈ 1000, but earlier experimental

flow visualisations of the flow past a sphere (Magarvey & Bishop 1961a,b; Magarvey &

MacLatchy 1965) suggested that the computational assumption of axisymmetric flow

was nonphysical at these higher Reynolds numbers. Despite this, a good correlation

between the computed drag coefficient CD, and experimentally measured values of CD

was found for 0 . Re . 1000.

A semi-analytical numerical study was conducted by Dennis & Walker (1971) for

14



the wake around a sphere. They employed Legendre functions to reduce the governing

equations to a series of ordinary differential equations, which were then solved numer-

ically. Only a steady axisymmetric flow was considered, with solutions being sought

for the vorticity and stream-function equations. By assuming that at separation, the

change in vorticity in the tangential direction at the rear of the sphere would be zero,

they interpolated a value for the separation transition Reynolds number of ReS1 ≈ 20.5,

between flows computed at Re = 20 and Re = 40.

Taneda (1956) performed an experimental study of the flow past a sphere being

towed through a tank, for Reynolds numbers Re = 5 – 300. By extrapolating the

linear relationship between the measured recirculation bubble length and log Re to

zero, he obtained a transition Reynolds number for flow separation from the sphere

of ReS1 = 24. He commented on the potential for discrepancies when measuring the

transition Reynolds number for flow separation in the wake. He noted that attempts

to identify the initial formation of the recirculation bubble visually was difficult, as

the bubble was initially very small and formed near to a stagnation in the flow where

the velocities were very small. Extrapolation of the recirculation bubble length against

Reynolds number was the preferred method for calculating the separation transition

Reynolds number, as the length of the bubble could be measured easily at higher

Reynolds numbers.

Recent numerical computations have allowed the separation transition Reynolds

number to be accurately determined. By extrapolating the variation in length of the

recirculation bubble with Reynolds number to zero from direct numerical computa-

tions, a value of ReS1 = 20 was determined from several studies (Tomboulides et al.

1993; Johnson & Patel 1999; Tomboulides & Orszag 2000). This value is remarkably

consistent with the value obtained from the early study by Dennis & Walker (1971).

Studies have also observed that at a critical Reynolds number ReS2, the recirculation

bubble becomes unstable to asymmetric flow.

2.2.2 Steady asymmetric flow

In the experimental study by Taneda (1956), it was observed that the axisymmetric re-

circulation bubble became unstable with an increase of Reynolds number. The stability

of the axisymmetric wake of a sphere to axisymmetric and asymmetric disturbances has

been studied numerically with varied success by Kim & Pearlstein (1990) and Natarajan
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& Acrivos (1993).

The numerical stability analysis of Kim & Pearlstein (1990) employed a spectral

method to solve the axisymmetric stream function form of the governing equations

for the base flow. An axisymmetric stability analysis was performed, which employed

the same method, and a non-axisymmetric stability analysis was performed, which

employed a modified primitive variables form. Their computations predicted that the

axisymmetric wake undergoes a non-axisymmetric Hopf bifurcation at Re = 175.1,

with an azimuthal mode number m = 1. The instability that they predicted had an

imaginary component giving a predicted linear oscillation frequency of St = 0.0955

at the onset of the instability. These predictions were at odds with the observations

from experimental studies, as unsteady flow was generally only observed for Re & 300

(Taneda 1956; Magarvey & Bishop 1961a,b; Magarvey & MacLatchy 1965).

The more recent numerical study performed by Natarajan & Acrivos (1993) proved

to be more successful. They employed a robust finite-element method for spatial dis-

cretisation of the flow past a sphere and the flow past a disc. They verified that a

high grid convergence was obtained in their computations by monitoring various wake

parameters, and an excellent agreement was obtained between the computed drag coef-

ficients of spheres and discs, and the previous experiments of Roos & Willmarth (1971),

up to Re = 200. Natarajan & Acrivos (1993) based their Reynolds number length scale

on the radius of the sphere and disc, whereas here they are converted to Reynolds num-

bers based on the diameter for consistency with other reported results. They predicted

that the first bifurcation of the steady axisymmetric wake of a sphere occurred at Re

= 210, with an azimuthal mode number m = 1. This instability was predicted to occur

through a regular (steady to steady flow) transition. They predicted that a secondary

mode occurs at Re ≈ 277.5. This secondary instability was predicted to occur through

a Hopf bifurcation to unsteady flow, with an azimuthal symmetry of m = 1. Despite the

axisymmetric base flow not providing a physical representation of the wake beyond the

primary non-axisymmetric instability, the predicted Hopf mode was still qualitatively

consistent with the experimental observations of the onset of unsteady flow in the wake

(270 < ReS3 < 300). The predicted azimuthal symmetries of the primary and sec-

ondary non-axisymmetric instabilities were in excellent agreement with experimental

observations of the non-axisymmetric wakes over similar Reynolds numbers (Magarvey

& Bishop 1961a,b).
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Stability of the sphere wake was studied using the complex wave amplitude Landau

equation (Ghidersa & Dušek 2000; Thompson et al. 2001). The coefficients of the linear

and cubic terms of the Landau model were estimated from non-axisymmetric numer-

ical computations close to the transition Reynolds numbers. The initial asymmetric

transition was found to be a regular type transition, occurring at ReS2, and the subse-

quent transition was identified as being a Hopf transition at ReS3 = 272. The critical

Reynolds numbers of the transitions are in excellent agreement with previous studies.

The analysis demonstrates that both transitions are predicted to occur through con-

tinuous supercritical bifurcations, and hence no hysteresis is expected in the vicinity

of either transition. The Hopf transition in the wake of a sphere was the subject of a

recent study by Schouveiler & Provansal (2002). They verified the supercritical nature

of the transition, and through experimental measurements of the wake of a sphere,

they determined coefficients of the Landau model to test the suitability of the model

in describing the wake dynamics.

(a) xy (side) view (b) xz (top) view

Figure 2.8: Steady asymmetric flow around a fixed sphere at Re = 250, taken from Ormières

& Provansal (1999).

Experiments and numerical computations performed by Johnson & Patel (1999)

found the axisymmetric wake to undergo a regular bifurcation through a shift of the

steady recirculating bubble behind the sphere from the axis at ReS2 ≈ 211. They

observed the double-threaded wake, consistent with previous experimental observations

(Magarvey & Bishop 1961a,b). The numerical studies of Tomboulides et al. (1993) and

Tomboulides & Orszag (2000) find a similar value, ReS2 = 212. The flow visualisations

in figure 2.8 provide a detailed representation of the asymmetric wake beyond the

transition. The shift of the recirculation bubble from the axis is evident, and to the

far right of the images, the pair of streamwise vortices which form the double-threaded

wake may be observed.
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2.2.3 Unsteady flow

Taneda (1956) perceived a small periodic pulsing with a long period at the rear of

the recirculation bubble for Re & 130. However, the far wake was observed to be

completely laminar up to Re ≈ 200, and the vortex ring was attached to the sphere

up to Re ≈ 300. In light of the more recent results reported here, it is reasonable to

assume that the observed pulsing was the result of an extrinsic instability associated

with the towing apparatus, as it was localised to the tail of the recirculation bubble.

This observed pulsing does suggest, however, that the recirculation bubble is sensitive

to perturbations in the vicinity of the transition.

Striking flow visualisations of the wakes behind spherical liquid droplets descending

through a tank were presented by Magarvey & Bishop (1961a). The liquid droplets

remained relatively uniform in size and shape, and provided a useful approximation

to the flow past a fixed solid sphere. They controlled the Reynolds number by judi-

cious selection of appropriate droplet size and liquid phases, as the Reynolds number

depended on the terminal velocity of a given droplet. They presented visualisations of

various wake states, including a steady, axisymmetric wake at Re = 200, and several

images of unsteady wakes at Reynolds numbers 350 ≤ Re ≤ 500. In all cases, the

unsteady wakes that they observed consisted of vortex loops being shed into the wake

from the alternate sides of the sphere. A plane of reflective symmetry was observed in

the wake up to approximately Re ≈ 500, and they observed that the wake at Re ≈ 600

no longer exhibited periodic shedding, and had lost its planar symmetry.

In their following paper, Magarvey & Bishop (1961b) reported similar experiments

over a wider Reynolds number range 0 < Re < 2500. Their experimental rig enabled

detailed images of the trailing wakes to be obtained, as the droplets were motionless

in the reference frame of the camera. Attention was paid to classifying the observed

wakes, which were summarised as follows: Class I (0 < Re < 210) exhibit a single

thread wake, Class II (210 < Re < 270) exhibit a double thread wake, Class III to V

(270 < Re < 700) exhibit planar-symmetric unsteady wakes, and Class VI (Re > 700)

exhibit asymmetrical aperiodic wakes.

Detailed photographs presented in Magarvey & Bishop (1961b) illustrate examples

of an axisymmetric Class I wake observed at Re = 170. Images of the Class II double-

threaded wake show a steady non-axisymmetric wake caused by a loss of axisymme-

try of the recirculation bubble. A distinction is drawn between the Class III wakes
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(270 < Re < 290), in which a waviness evolves downstream of the double-threaded

wake, and the Class IV and V wakes, which display a well-defined shedding of vor-

tex loops. The effect of having no transverse restraint on the free-falling droplets on

the observed wakes remained an open question from their work. They estimated a lin-

ear St-Re relationship for the single-loop shedding observed for 290 < Re < 410, which

varied between 0.05 < St < 0.065; the St-Re profile represents data obtained from the

double-loop shedding observed for Class V wakes.

A later work by Magarvey & MacLatchy (1965) analysed the formation and evolu-

tion of the unsteady wake of a sphere with a careful image-acquisition technique. They

proposed a “sheet involution” mechanism for the shedding process, whereby instead of

vorticity convecting directly into the axisymmetric wake for Re . 200, vorticity is first

transferred to the region behind the sphere, where a loop is formed. They described that

below the critical Reynolds number for unsteady flow (ReS3 ≈ 300), sufficient vorticity

was transported into the wake via the double-threaded tails to maintain a steady wake,

and beyond the critical Reynolds number the wake becomes unstable, and a periodic

shedding of vortex loops ensues. A series of photographs capturing the evolution of the

initial vortex loop following the destruction of symmetry in the wake was presented,

representing a Class III wake at Re = 340.

The flow visualisations from various numerical computations (Tomboulides et al.

1993; Johnson & Patel 1999; Tomboulides & Orszag 2000) support the bifurcation sce-

(a) xy (side) view (b) xz (top) view

(c) xz (top) view of downstream

Figure 2.9: Unsteady flow around a fixed sphere. Re = 340 for (a) and (b), Re = 320

for (c). The pictures are taken from Ormières & Provansal (1999) for (a) and (b), and from

Leweke et al. (1999) for (c).
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nario predicted by Natarajan & Acrivos (1993), with unsteady wakes being observed

for Re & 280. Each of these studies found that the unsteady wake consisted of vortex

loops or hairpins that shed downstream from the sphere, in the same plane as that

of the steady double-threaded wake. The observed wake structures are in good agree-

ment with the experimental observations of Magarvey & Bishop (1961a,b); Magarvey

& MacLatchy (1965); Ormières & Provansal (1999) and Leweke et al. (1999), pertaining

to the shedding of vortex-loops into the wake (see figure 2.9).

2.2.4 High Reynolds number flow

Computations by Mittal (1999a,b) verified both the earlier computations (Tomboulides

et al. 1993; Johnson & Patel 1999) and experimental observations (Magarvey & Bishop

1961b; Magarvey & MacLatchy 1965) of the periodic wake of a sphere. They showed

that the wake remained planar-symmetric up to a Reynolds number of Re ≈ 375,

beyond which the symmetry was lost. Combining a Digital Particle-Image-Velocimetry

technique with a spatio-temporal reconstruction technique, the asymmetric structure

of the wake of a sphere was analysed by Brücker (2001), who observed a similar loss of

symmetry occurring within the Reynolds number range 400 < Re < 500.

Tomboulides et al. (1993) observed fine scale flow structures in the wake of a

sphere computed with a large-eddy simulation method, for a Reynolds number range

of 500 < Re < 1000. Magarvey & Bishop (1961b) observed a breakdown in periodic-

ity of the hairpin shedding for Re > 600 also. These results are considered to mark

the onset of turbulence. Measurements indicating the development of similar fine-scale

structures are reported by Chomaz et al. (1993) and Tomboulides & Orszag (2000),

who speculated that these structures developed from a Kelvin-Helmholtz instability of

the shear layer separating from the sphere. The smoke-wire visualisations presented by

Kim & Durbin (1988) show fine-scale wake structures behind a sphere for Re = 32000,

consistent with a Kelvin-Helmholtz instability of the separating shear layer.

Achenbach (1972) performed wind-tunnel experiments over a range of Reynolds

numbers 5 × 104 < Re < 6 × 106. At these Reynolds numbers, the wake was observed

to be highly turbulent. However, the flow could be considered incompressible, as the

Mach number (fluid flow speed/speed of sound) of Ma ≈ 0.1 was far lower than the

critical Mach number requiring consideration of compressible flow (Ma ≈ 0.3). To

overcome skin friction effects, the sphere was highly polished, and measurements of
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both pressure drag and skin friction were made. He also reported a massive reduction

in drag from CD ≈ 0.5 at Re = 3 × 105, to CD ≈ 0.06 at Re ≈ 3.7 × 105, and

identified four flow regimes over the Reynolds number range he investigated. These

flow regimes included a subcritical regime for 4 × 104 < Re . 3 × 105, a critical regime

for 3 × 105 . Re . 3.7 × 105, a supercritical regime for 3.7 × 105 . Re . 1.5 × 106, and

a transcritical regime for 1.5 × 106Re . 6 × 106.

(a) Before Drag Crisis, Re = 2 × 104 (b) After Drag Crisis, Re = 5.8 × 105

Figure 2.10: Turbulent flow around a fixed sphere at high Reynolds numbers, taken from

Taneda (1978).

The wake dynamics over this high-Reynolds-number range was investigated by

Taneda (1978), employing surface oil-flow visualisation and smoke visualisation to gain

an understanding of the wake dynamics and structure. The experimental setup en-

abled Reynolds numbers to be studied over the range 104 < Re < 106. He observed

evidence of a progressive wave motion in the wake for 104 < Re < 3 × 105, and a

streamwise pair of vortices for 3.8 × 105 < Re < 106. Consistent with Achenbach

(1972), a sharp drag decrease (drag crisis) was found over the critical Reynolds number

regime to Re ≈ 3.8 × 105. Further observations confirmed that the critical regime com-

prised a laminar separation at 100o, and a turbulent reattachment at 117o, followed by

a turbulent separation at 135o (see figure 2.10). In addition, he observed a slow irreg-

ular rotation of both the subcritical wavy planar wake, and the supercritical turbulent

double-threaded wake.

In a subsequent work, Achenbach (1974) studied the vortex shedding in the wake of

a sphere for Reynolds numbers 400 < Re < 5 × 106. Water channel measurements were

taken for Re < 3 × 103, and from flow visualisation, his famous schematic representation

of the vortex-loop configuration of the unsteady wake of a sphere at Re = 1000 was
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sketched. Visualisations of the wake for Re ≈ 400 showed a steady, asymmetric wake.

Useful Strouhal-Reynolds number measurements were made, illustrating, among other

points, the large discrepancy between the measured shedding frequency of the wake of

a fixed sphere, and the liquid droplets from Magarvey & Bishop (1961a,b).

2.3 Dynamics of Bubbles

The flow around bubbles, in particular spherical bubbles, has many characteristics in

common with that around solid spheres, for example the transitions with increasing

Re. Among many of the characteristics, the path instability of the spherical bubbles

is chosen to be reviewed here because of its close links to the wake dynamics and its

resemblance to the trajectory of the vertically tethered sphere (Provansal et al. 2004),

which is reviewed in section 2.6.2.

Path instability of the bubbles occurs essentially in the intermediate range of bubble

size where bubbles are roughly ellipsoidal; nearly spherical bubbles and large, spherical

capped bubbles (Wegener & Parlange 1973) do not exhibit path instability. Two types

of motion are typically observed when path instability occurs: a zigzag motion where

bubbles spend a long time in the same vertical plane and a helical motion with circular

or elliptical horizontal displacements (Mercier et al. 1973). A transition from helical

to zigzag path is often observed by increasing the size of the bubble (Lunde & Perkins

1997). It was also noticed consistently that the path of a given bubble may be first

zigzag and then helical (Saffman 1956; Lunde & Perkins 1997; Wu & Gharib 2002; Shew

et al. 2006), whereas the reverse transition has never been reported (see figure 2.11).

A theoretical analysis of path instability was developed by Saffman (1956) and

Hartunian & Sears (1957). Both studies focused on the coupled action of inertia,

surface tension, and interface deformation. Saffman (1956) addressed the conditions

under which the bubble can follow a zigzag or helical path and examined the stability of

the flow near the front stagnation point, assuming that the liquid motion is irrotational

in that region (but not necessarily all around the bubble). It was concluded that the

helical motion can exist only if the bubble aspect ratio lies between 1.2 and 2.2, which

corresponds to bubble diameters between 1.4 mm and 7.3 mm in pure water. It was

also demonstrated that any zigzag deviation from the rectilinear path is amplified when

the bubble aspect ratio is larger than 1.2, and he conjectured that the zigzag instability

arises from a coupled interaction between this instability and the oscillations of the
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(a) (b)

Figure 2.11: Examples of the bubble path rising in still fluid, (a) is taken from Wu &

Gharib (2002) and (b) from Shew et al. (2006). The bubble begins rising straight, followed

by zigzag motion with oscillating velocity, followed by a three-dimensional spiral motion with

steady velocity. Note that the bubble is an ellipsoid where the aspect ratio is dependent on

its equivalent radius.

wake.

In contrast, Hartunian & Sears (1957) assumed that the flow is irrotational every-

where around the bubble and that, prior to the onset of the instability, the bubble

is spherical. Based on a linear perturbation analysis of shape, velocity, and pressure,

they concluded that shape oscillations lead to a path instability beyond a critical Weber

number (the ratio of inertia force to surface tension) of 5.45. By introducing a posteriori

the effect of a nonspherical unperturbed shape, they corrected this value and obtained a

lower critical Weber number of 3.03 in better agreement with their experiments. Their

analysis was repeated by Meiron (1989), who first calculated numerically the unper-

turbed bubble shape for fixed values of the Weber number and studied the evolution of

three-dimensional perturbations around this state. It was verified that path instability

requires the flow to be rotational somewhere around the bubble, a condition consistent

with the assumptions used by Saffman (1956).

Even though the possible role of the wake was evoked by Saffman (1956), the dy-

namics of a bubble wake have only recently been illuminated through flow visualisation
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studies (Lunde & Perkins 1997; Mougin & Magnaudet 2002). There is now strong

support that path instability is intimately coupled to the instability of the wake; how-

ever, not many specific theoretical or numerical investigations of the stability of an

axisymmetric bubble wake have been reported. In contrast, the stability of the wake

structure behind a solid sphere has been studied in detail (Natarajan & Acrivos 1993;

Ormières & Provansal 1999; Tomboulides & Orszag 2000; Johnson & Patel 1999). It

has been shown, as reviewed in section 2.2, that the flow behind a solid sphere loses its

axisymmetry through a regular bifurcation that occurs around ReS1 ≈ 210. Beyond

this value, two vortex filaments, in which streamwise vorticity is concentrated, appear.

No unsteadiness occurs until a second critical value ReS2 ≈ 280 is reached, when a

supercritical Hopf bifurcation takes place, and hairpin-like vortices are shed. Because

a fully contaminated bubble behaves like a solid spheroid, it could be anticipated that

the axisymmetry of the bubble wake breaks down at ReS1; this value is in agreement

with the experimental criterion given by Hartunian & Sears (1957) for contaminated

bubbles.

The relationship between the wake structure and trajectory of clean bubbles (helical

or zigzag) has been notably clarified by the flow visualisations of Lunde & Perkins (1997)

and Mougin & Magnaudet (2002). They showed that the helical path is associated with

a steady wake made of two vortex threads (analogous to the wake of a solid sphere in the

range ReS1 ≤ Re ≤ ReS2), whereas the zigzag path is observed when hairpin vortices

are shed in the wake (as for Re ≥ ReS2 with a solid sphere).

An integral component to predict the motion of zigzagging or spiralling bubbles is

to quantify the force and torque acting on them. In all (both spiralling and zigzagging)

cases, experiments show that the minor axis of the bubble is always directed along

the local tangent to the path (Lunde & Perkins 1998). Recently, Shew et al. (2006)

studied the dynamics of millimetre-sized air bubbles rising through still water using

ultrasound Velocimetry combined with high-speed video. Drag and lift on the bubble

were calculated from their measurements of speed and three-dimensional trajectories

of planar zigzag or spiralling motion. The importance of the wake vortices (found

in previous studies) was again emphasised by temporal correlations of forces and the

oscillatory bubble motions, particularly the lift force.
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2.4 VIV of Elastically Mounted Circular Cylinders

Fluid forces acting on a body may be directly related to the vortex structures in the

surrounding fluid. For the case of a bluff body, the vortices in the wake form periodic

fluid structures referred to collectively as the Kármán vortex street (discussed in sec-

tion 2.1.2). These structures induce periodic forcing on the body. Depending on the

mass of the body, its mechanical damping and its spring stiffness, the periodic forcing

can induce vibrations of the body.

Studies of vortex-induced vibration of cylinders generally consider either the motion

of a elastically mounted cylinder which has the same motion along the entire length of

the span, in which vortex-induced vibration creates travelling modes along the span.

An elastically mounted cylinder generally exhibits vortex-induced vibration along part

of the span which subsequently forces oscillations at different spanwise locations. Vari-

ations in the inlet velocity are quantified by the reduced velocity U∗ = U∞/fn D, where

U∞ is the inlet velocity, D is the cylinder diameter and fn is the natural frequency of

the elastically mounted cylinder.

Elastically mounted bluff bodies generally exhibit vortex-induced vibrations with

components streamwise and transverse to the flow field. Across a wide range of U∗, the

largest amplitude of the transverse component of oscillations is typically an order of

magnitude greater than the largest amplitude of the streamwise component (Bearman

1984). It could be anticipated that large amplitude transverse oscillations, excited by

the lift force, occur when the shedding frequency, fv, approaches the natural frequency

of the system, fn (i.e., a peak in the transverse component of oscillation occurs as

U∗ → 1/St).

As the Strouhal number for a fixed circular cylinder can be assumed to be roughly

equal to 0.2 over a wide range of Reynolds number, a peak amplitude in transverse

oscillations should occur as U∗ → 5; this phenomenon has been widely reported (Sarp-

kaya 1979; Griffin & Ramberg 1982; Williamson & Govardhan 2004). Similarly for

streamwise oscillations, it may be anticipated that a peak in the amplitude will occur

as fDrag = 2 fv → fn, as the drag force is now driving the oscillation. Appreciable

streamwise oscillations have been reported in the range U∗ = 1.5 – 4 by King (1974).
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2.4.1 Cylinder oscillating in transverse direction

The general set-up used to study vortex-induced vibration is that of an elastically

mounted circular cylinder, in which the cylinder is made to vibrate only transversely

to the freestream. This limits the degrees of freedom of the mechanical system, and

also allows the results gained to be as general as possible. While generic and simplified,

this system can still be difficult to study due to the interaction between the fluid flow

and the cylinder movement. The lift force on the cylinder that drives its vibration

is flow induced, yet that flow is partially governed by the resulting movement of the

cylinder. Still, many studies have been performed in this way, and have observed that

the cylinder motion, when periodic, appears sinusoidal over time.

As the flow speed U increases, a condition is reached when the vortex shedding

frequency fv is close enough to the body’s natural frequency fn such that the unsteady

pressures from the wake vortices induce the body to respond and to reach lock-in, or

synchronisation. The phenomenon of lock-in, or synchronisation, traditionally means

that the body oscillation frequency f is close to the body’s natural frequency fn; in

other words, the ratio f∗ remains close to unity.

Feng (1968) found that, for the body with high mass ratio (m∗ ≫ 1), f∗ is close

Figure 2.12: Amplitude responses of elastically mounted cylinders (Khalak & Williamson

1997). � represents the low mass ratio data and ⋄ represents the high mass ratio data from

Feng (1968).
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to unity (see figure 2.12). However, for lighter bodies in water, for instance, m∗ = 2.4

in figure 2.13(a), the body oscillates at a distinctly higher frequency (f∗ = 1.4). The

experiments by Angrilli et al. (1974) found that for cylinders with a low mass ratio (m∗

≈ 1.5), the body oscillation frequency tended toward the vortex shedding frequency

of the flow. The departure of f∗ from unity through the lock-in regime was shown in

the experimental study of Khalak & Williamson (1999). Therefore, one might define

lock-in as the matching of the frequency of vortex shedding fv with the body oscillation

frequency f . Within this lock-in regime, three distinct branches of cylinder oscillation

were observed as the flow speed was increased: an initial, upper and lower branch of

oscillation as in figure 2.12. These three branches of oscillation have also been found for

circular cylinders with low mass ratio (Govardhan & Williamson 2000; Blackburn et al.

2001; Shiels et al. 2001). The lock-in regime (f = fv) has been observed for higher m∗

circular cylinders; however, only two of the observed branches appear to exist, which

are the initial and lower branch (Bearman 1984). Govardhan & Williamson (2000)

found that the upper branch exhibited significantly higher amplitude oscillations than

either of the other two branches.

Certain wake patterns can be induced by body motion, such as the 2S mode (2 single

vortices per cycle) and the 2P mode (comprising 2 vortex pairs formed in each cycle)

following the terminology in Williamson & Roshko (1988). Interestingly, a forced vi-

bration can also lead to other vortex modes including a P+S mode, which is not able

(a) Low mass ratio (b) High mass ratio

Figure 2.13: Frequency response of elastically mounted cylinder from Khalak & Williamson

(1999). Note that the oscillating frequency of body with low mass ratio (m∗ = 2.4) in (a) is

higher than its natural frequency fn. In contrast, the oscillating frequency of body with high

mass ratio (m∗ = 10.3 and 20.6) in (b) is close to fn
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to excite a body into free vibration. Generally, a periodic vibration ensues if the energy

transfer, or work done by the fluid on the body, over a cycle is positive. This net energy

transfer is influenced significantly by the phase of induced side force relative to body

motion, which in turn is associated with the timing of the vortex dynamics. Feng (1968)

found a hysteresis between the initial and lower branches , while the upper to lower

transition involves an intermittent switching. He also noted that the jump in response

amplitude was reflected by a significant jump in the phase of the pressure fluctuations

relative to body motion. Zdravkovich (1982), for the first time, showed that a jump in

phase angle (between transverse force and displacement) through resonance is matched

by a switch in the timing of vortex shedding using visualisations from previous studies.

(a) Initial 2S (b) Upper 2P (c) Lower 2P

Figure 2.14: Wakes of transversely oscillating cylinder from Govardhan & Williamson

(2000).

Govardhan & Williamson (2000) found that the upper and lower branches exhibit

a 2P wake structure as shown in figure 2.14. They also found that transition from the

upper to the lower branch results in a change of the phase between the total lift force

and the cylinder displacement; the upper branch exhibiting in-phase oscillation, the

lower branch of oscillation exhibiting 180o out-of-phase oscillation. Further, they found

that when oscillation amplitude was plotted against reduced velocity U∗, the transition

point from the upper to the lower branch of shedding was inversely proportional to the

mass ratio of the cylinder.

2.4.2 Cylinder oscillating in streamwise direction

King (1974), by restricting the cylinder to only oscillate streamwise with the flow, ob-

served oscillations up to 0.15 diameters in amplitude in the Reynolds number range
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of 6 × 104 ≤ Re ≤ 6 × 105. He observed two modes of shedding. The first is a sym-

metric mode, where both positive and negative vortices are shed from the cylinder for

each oscillation cycle and convect downstream symmetrically (see figure 2.15). Fur-

ther downstream, the symmetric structure becomes unstable and the wake reverts to

the staggered Kármán type. The symmetric mode was found to occur in the range,

U∗ = 1 − 2.5. A local minimum in the streamwise oscillation amplitude was noted at

U∗ = 2.5; however, in the range U∗ = 2.5 − 4, a second mode of shedding was observed

(see figure 1.14). In this mode, a single vortex is shed per oscillation cycle, and the

wake resembles the traditional Kármán arrangement. King (1974) further speculated

that a critical Reynolds number existed, in the range Re = 1200 − 1500, below which

streamwise oscillations were not observed.

Figure 2.15: Amplitude response of a cylinder free to oscillate in the streamwise direction

as a function of U∗, taken from (King 1974).

2.4.3 Cylinder oscillating in transverse and streamwise direction

Two distinct areas of research have involved cylinders with oscillation components in

both the streamwise and transverse directions. The first area restricts the cylinder

to oscillate at an angle inclined to the free stream. Ongoren & Rockwell (1988)

investigated the forced oscillation of a cylinder at an angle to the free-stream. They

found that phase locking between the cylinder oscillations and the cylinder wake was

possible for all oscillation angles investigated (α = 0 – 90o).
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The second area of the research allows the cylinder to freely oscillate with com-

ponents in the streamwise and transverse directions. Moe & Wu (1990) studied this

case; however, due to their experimental setup, the streamwise mass ratio was different

to the transverse mass ratio. The experimental setup also gave distinct streamwise

and transverse natural frequencies. They found a broad range of reduced velocity over

which large peak to peak oscillations were observed. However, they did not find any

evidence of the distinct branches of oscillation discussed previously. Sarpkaya (1995),

using a similar experimental setup, found that the response of a cylinder allowed to

oscillate with components in both the streamwise and transverse directions could, in

certain circumstances, behave substantially differently to the freely oscillating cylinder,

restricted to transverse oscillations discussed in section 2.4.1.

Jauvtis & Williamson (2003) investigated the case of a cylinder allowed to freely os-

cillate in both the streamwise and transverse directions, where the mass ratio and

natural frequency was the same in both the streamwise and transverse directions.

They investigated the mass ratio range, m∗ = 5 − 25 and the reduced velocity range,

U∗ = 2 − 12. For U∗ = 5, they found remarkably little difference in the results be-

tween their experimental setup and the transverse oscillating cylinder discussed in the

previous section. For low reduced velocities the cylinder oscillated similarly to that

described by King (1974) for the case of a cylinder oscillating streamwise with the flow

field. However, there was a dramatic change in the response of the cylinder when mass

ratios are reduced below m∗ = 6. A new response branch with significant streamwise

motion appeared in what they called “super-upper” branch, which yields large ampli-

tudes of three diameters peak-to-peak. They also reported that the super-upper mode

comprises a triplet of vortices formed in a half cycle, and named it the “2T” mode.

2.5 VIV of a Tethered Circular Cylinder

One of the simplest extensions to the classical problem of a elastically mounted oscil-

lating cylinder is a circular cylinder whose motion is confined to an arc by a restraining

tether. However, little progress has been made regarding the fluid-structure interac-

tion of a tethered body. This system geometry has practical applications in submerged

pipelines, offshore spar platforms and light craft tethered in air. It is also of interest

because it exhibits flow-induced oscillation where the combined effects of streamwise

oscillation and transverse oscillation maybe observed.
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Ryan et al. (2004a), for the first time, numerically studied the tethered cylinder

system with a spectral element method. It was found that, at large mean layover an-

gles, the tethered cylinder would behave in a fashion similar to the elastically mounted

cylinder with low mass ratio and oscillate in either the upper or lower branch of shed-

ding depending on U∗ and m∗. They noted that the cylinder system to be strongly

influenced by the mean layover angle as this parameter determined if the oscillations

would be dominated by streamwise oscillations, transverse oscillations or a combination

of the two. Three branches of oscillation were noted, an streamwise branch, a transition

branch and a transverse branch (see figure 2.16). It was also reported that the stream-

wise oscillation for small layover angle corresponds to a classic Kármán street wake, and

the transverse oscillation for larger layover angle at higher flow speeds corresponds with

the formation of vortex pairs. Within the transition branch, the cylinder oscillates at

the vortex shedding frequency and modulates the drag force such that the drag signal

is dominated by the lift frequency. It was found that the mean amplitude response is

greatest at high reduced velocities, i.e., when the cylinder is oscillating predominantly

transverse to the fluid flow. Furthermore, the oscillation frequency is synchronised to

the vortex shedding frequency of a stationary cylinder, except at very high reduced

velocities.

Ryan et al. (2004b) reanalysed the same results, and observed a negative mean lift

coefficient for a majority of mean layover angles considered. The mean lift coefficient

only approached zero as ϑ → 0o or 90o. The minimum CL recorded was approximately

0.05, corresponding to ϑ = 40o. They related the non-zero mean lift coefficient to

an asymmetry in the wake behind the cylinder. Furthermore, they related the wake

asymmetry with the mean layover angle about which the cylinder oscillates, noting that

the asymmetry (and hence the magnitude of CL) was most prominent in the transition

mode.

Recently, Carberry & Sheridan (2007) experimentally investigated the flow interac-

tion with a tethered cylinder for mass ratios in the range m∗ = 0.54 – 0.98, for a fixed

tether length (L∗ = 4.6), and Re = 900 – 7390. They found a mass ratio, (m∗ = 0.72),

below which large-amplitude oscillations were observed at high mean layover angles.

When the results were plotted against the Froude number (Fr = U∞/
√

gD, where U∞

is the free-stream velocity and g is the gravity acceleration), they found that the jump

in amplitude occurred as Fr → 1 for all m∗ < 0.72. This finding was qualitatively
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(a) Amplitude (b) Frequency

(c) Layover angle

Figure 2.16: Response of a buoyant tethered cylinder as a function of the reduced velocity,

taken from Ryan et al. (2004a). In (a), 2 is the amplitude is in the direction of the motion.

In (b), ◦ corresponds to the principal frequency of the cylinder oscillation and 2 corresponds

to the secondary frequency. In (c), ◦ is from the results of Ryan et al. (2004a) compared to

the analytical values represented by the solid line.

in agreement with the low-Reynolds-number (Re = 200) numerical findings of Ryan

(2004), who determined a mass ratio m∗ = 0.38 below which large-amplitude oscilla-

tions were observed with a tether length of L∗ = 5. Due to their experimental setup,

Carberry & Sheridan (2007) could not determine a negative mean lift, and assumed, for

their force balance calculations, that it was negligible compared with the other mean

forces acting on the cylinder.
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2.6 VIV of a Tethered Sphere

2.6.1 Tethered spheres in oscillatory flow

The vast majority of work on tethered spheres were concerned with the action of surface

waves on tethered buoyant structures. For example, the investigations of Harlemann

& Shapiro (1961) and Shi-Igai & Kono (1969) employed empirically obtained drag and

inertia coefficients for use in the so-called Morison’s equation (Morison et al. 1950;

Sarpkaya 1986). Consequently, because the waves represented harmonic forcing func-

tions, the tethered sphere was found to vibrate vigorously. However, the coupling of

the wave motion and the dynamics of the sphere resulted in complicated equations of

motion from which it is difficult to understand the underlying physics.

Gottlieb (1997) investigated a nonlinear, small-body mooring configuration excited

by finite-amplitude waves and restrained by a massless elastic tether. A Lagrangian

approach was formulated in which the stability of periodic motion was determined nu-

merically using Floquet analysis and revealed a bifurcation structure including ultra-

subharmonic and quasi-periodic responses. The hydrodynamic dissipation mechanism

was found to control stability thresholds, whereas the convective terms enhanced the

onset of secondary resonances culminating in chaotic motion. Consequently, excita-

tion by finite-amplitude waves may generate a complex transfer of energy between the

modes of motion for wave frequencies that are integer multiples of the system natural

frequencies.

2.6.2 Tethered spheres in uniform flow

Williamson & Govardhan (1997) found that a tethered sphere does indeed vibrate in a

uniform flow. In particular, they found that it will oscillate vigorously at a transverse

saturation amplitude of close to two diameters peak-to-peak. This transverse oscillation

frequency was at half the frequency of the streamwise oscillations, although the natural

frequencies of both the streamwise and transverse motions were the same. In the

Reynolds number range of their experiments (Re < 12000), the response amplitude was

a function of the flow velocity. They found that a more suitable parameter on which

to gauge the response is the reduced velocity, U∗. However, conclusions regarding the

synchronisation of natural and vortex formation frequencies were lacking due to the

large scatter in the literature of the vortex formation frequency in the wake of a sphere.
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Govardhan & Williamson (1997) noted that the maximum Root-Mean-Square (RMS)

amplitude was approximately 1.1 diameters, regardless of the mass ratio. It was fur-

ther found that the vortex shedding frequency for a fixed sphere matched the natural

frequency for the tethered sphere at the same reduced velocity, U∗ ≈ 5, at which the

local peak in the RMS response occurred. This suggests that the local peak in the

RMS response is caused by a resonance between the natural frequency of the tethered

body and the wake vortex shedding frequency, and is known as mode I response (see

figure 2.17(a)). For high mass ratios (typically m∗ ≫ 1), the oscillation frequency at

large reduced velocity tended toward the natural frequency. However, it is interesting

to note that the oscillation frequency for lower mass ratios (m∗ < 1) at high U∗ did

not correspond to either the natural frequency or the vortex shedding frequency for a

fixed sphere as shown in figure 2.17(b).

Jauvtis et al. (2001) focused on mass ratios between m∗ = 80 and 940 and reduced

velocities in the range U∗ = 0 – 300. For the sphere of mass ratio 80, they found a

new mode of vibration (defined as mode III) and which extends over a broad regime

of U∗ = 20 – 40. Because of the high mass ratios involved, the oscillation frequency

remained very close to the natural frequency of the tethered sphere, whereas low m∗

yielded oscillation frequencies higher than, and depart significantly from, the natural

frequency (Govardhan & Williamson 1997). This mode cannot be explained as the

classical lock-in effect, since between 3 and 8 cycles of vortex shedding occurs for each

cycle of sphere motion. Although no explanation is given here, they note that there

must exist vortex dynamics which are repeatable in each cycle, and which give rise to

the fluid forcing component that is synchronised with the body motion.

Jauvtis et al. (2001) also found that, for reduced velocities beyond the regime for

mode III, another vibration mode was discovered that grew in amplitude and persisted

to the limit of flow speed in the wind tunnel. The sphere dynamics of this “mode IV”

were characterised by intermittent bursts of large-amplitude vibration, in contrast to

the periodic vibrations of modes I to III. In addition, despite these intermittent bursts,

the vibration frequency of this mode remained very close to the natural frequency

throughout the range of up to at least U∗ = 300. With the vortex shedding frequency

between 40 and 50 times the oscillation frequency, the vortex shedding cannot be re-

sponsible for these large vibrations, and the origin of these transient bursts remains

unknown.
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(a) Amplitude

(b) Frequency

Figure 2.17: Response of a tethered sphere from Govardhan & Williamson (2005). Ay
∗ is

the transverse amplitude normalised by sphere diameter D, and f∗ is the transverse body

vibrations frequency normalised by its natural frequency. m∗ = 2.83 in (a) and m∗ = 0.76 in

(b). The maximum Re for peak amplitude is about 3500.

Govardhan & Williamson (2005) extended their previous study on sphere vortex-

induced vibration and found that the body oscillation frequency f is of the order of

the vortex shedding frequency of fixed body fvo and there exist two modes of peri-

odic large-amplitude oscillation, defined as modes I and II (Govardhan & Williamson

1997; Williamson & Govardhan 1997), separated by a transition regime exhibiting non-

periodic vibration. In the case of the very light tethered body, the transition between

modes is quite distinct, especially when the response amplitude is plotted versus the

parameter (U∗/f∗) St which is equivalent to fvo/f , where a jump between modes is
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clearly exhibited (see figure 2.18).

Govardhan & Williamson (2005) noted that the phase of the vortex force relative

to sphere dynamics is quite different between the modes I and II. This difference in

the phase of the vortex force is consistent with the large difference in the timing of the

vortex formation between modes, which was observed from the vorticity measurements

for the light sphere vibrations (see figure 2.19). This mode cannot be explained as the

classical lock-in effect, since between 3 and 8 cycles of vortex shedding occurs for each

cycle of sphere motion. For reduced velocities beyond the regime for mode III, another

vibration mode was discovered that grew in amplitude and persisted to the limit of

flow speed in the wind tunnel (Jauvtis et al. 2001). The sphere dynamics of this mode

IV were characterised by intermittent bursts of large-amplitude vibration, in contrast

to the periodic vibrations of modes I, II and III. In addition, despite these intermit-

tent bursts, the vibration frequency of this mode remained very close to the natural

frequency throughout the range up to at least U∗ = 300. With the vortex shedding

frequency between 40 and 50 times the oscillation frequency, the vortex shedding was

presumably not responsible for these large vibrations, and the origin of these transient

bursts remains unknown.

Recently, Provansal et al. (2004) reported interesting results regarding the response

of a tethered sphere where the tether is parallel to the stream. Their experiments

Figure 2.18: Amplitude response of a tethered sphere from Govardhan & Williamson (2005).

m∗ = 11.7 and the maximum Re = 3000. The ordinate is transverse amplitude normalised

by sphere diameter, and the abscissa is the fvo/f .
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(a) Mode I (b) Mode II

(c) Mode III

Figure 2.19: Reconstructed wakes from Particle-Image-Velocimetry data behind a tethered

sphere, taken from Govardhan & Williamson (2005).

were performed in a vertical water tank with a sphere of m∗ = 2.433 and a tether of

9-diameter long, and found a quasi-circular motion or an elliptic motion in the cross-

section normal to the flow when the reduced velocity is U∗ ≥ 4. The Re range was

Re = 600 – 800. The oscillating frequency was close to its natural frequency, i.e.,

f∗ = f/fn = 1, because the mass ratio m∗ > 1. Due to this different response of the

vertically tethered sphere to the results of Govardhan & Williamson (1997); Williamson

& Govardhan (1997); Govardhan & Williamson (2005), it is indicated that the direction

of gravity acting on a tethered sphere has considerable effect as well as the gravity

magnitude, which is reflected in the mass ratio.

Pregnalato (2003) numerically investigated the case of a tethered sphere for the

much lower Reynolds number range, Re = 200 – 500. In his investigation, the first

mode of oscillation, mode I, found by Govardhan & Williamson (2005), was not found.

However, the numerical results compared well with experiments performed in the same

Reynolds number range.

37



2.7 Chapter Summary and Points of the Present Study

The preceding review of literature has shown that, while some very useful findings have

been made in the field of bluff body flows, and vortex-induced vibration of the body

(in particular the cylinder) in general, it is not clear whether the knowledge compiled

mainly for the vortex-induced vibration of cylinders is applicable to other types of

vortex-induced vibration. Among others, not many aspects of the motion of a tethered

body is understood although it is common to see this type of body constraint in marine

applications. With a hope to uncover new aspects of the vortex-induced vibrations of

tethered bodies using the pre-compiled knowledge, previous studies in the related field

have been reviewed.

From the literature, a summary of the wake characteristics of the flow around a

fixed cylinder is presented in table 2.1. The Reynolds numbers considered in the present

study range from 10 to 300, and this covers the range over which the flow varies from

two-dimensional and steady to unsteady and three-dimensional.

Reynolds number Wake Characteristics

Re < 6 Two-dimensional, steady, symmetric, attached to cylin-
der.

Re = 6 – 46 Two-dimensional, steady, symmetric, separated.

Re = 46 – 180 Two-dimensional, unsteady periodic, Kàrmàn vortex
street.

Re = 180 – 260 Three-dimensional, unsteady, Mode A.

Re = 260 – 300 Three-dimensional, unsteady, Mode B.

Table 2.1: Wake characteristics of the flow around fixed cylinders for the Reynolds number
up to Re = 300.

The characteristics of the wake for a fixed sphere are summarised in table 2.2 up to

Re = 3000. It should be noted that the sphere wake becomes asymmetric first prior to

being unsteady.

For bubbles rising in fluid, two types of motion have been observed when path

instability occurs: a zigzag motion where bubbles spend a long time in the same vertical

plane, and a helical motion with circular or elliptical horizontal displacements. A

transition from helical to zigzag path is often observed by increasing the size of the

bubble. It was also noticed consistently that the path of a given bubble may be first

zigzag and then helical (Lunde & Perkins 1997; Mougin & Magnaudet 2002). The

relationship between the wake structure and trajectory of bubbles (helical or zigzag)
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Reynolds number Wake Characteristics

Re < 24 Laminar, axisymmetric, attached to sphere.

Re = 24 – 212 Axisymmetric, steady, separated.

Re = 212 – 275 Non-axisymmetric, steady, planar-symmetric, “double
thread” wake vortex formation.

Re = 275 – 420 Non-axisymmetric, unsteady, planar-symmetric, periodic
vortex shedding in the form of vortex loops or hairpin
vortices.

Re = 420 – 480 Planar symmetry is lost, shedding direction oscillates in-
termittently.

Re = 480 – 650 Vortex shedding pattern becomes irregular.

Re = 650 – 800 Separated cylindrical vortex sheet pulsates, vortex tubes
begin to be periodically shed in accordance with the pul-
sation.

Re = 800 – 3000 Hairpin vortices become turbulent with alternate fluc-
tuations, both high- and low-mode Strouhal numbers
coexist.

Table 2.2: Wake characteristics of the flow around fixed spheres for the Reynolds number
up to Re = 3000.

has been notably clarified by the flow visualisations. It has been shown that the helical

path is associated with a steady wake made of two vortex threads (analogous to the

wake of a solid sphere in the range 210 ≤ Re ≤ 270), whereas the zigzag path is observed

when hairpin vortices are shed in the wake (as for Re ≥ 270 with a solid sphere).

Most studies of vortex-induced vibration that have focused on an elastically-mounted

circular cylinder vibrating transversely have originated from the marine engineering

sector. Previous studies of this vortex-induced vibration have shown that the (non-

dimensional) flow speed and the relative body to fluid mass are two important param-

eters affecting the vortex-induced vibration of the body. The body is found to vibrate

when the value of the flow speed reaches the point where vortex shedding commences.

Further increase of the flow speed can result in a resonance occurring, a major concern

of VIV. The range of resonance is a function of the relative body mass to the displaced

fluid mass (the so-called mass ratio). It has been identified that the smaller the mass

ratio is, the larger the resonance region becomes. The response branches within the

resonance region are also dependent on the mass ratio. A body that is denser than

the fluid exhibits two response branches (Feng 1968), whereas a lighter body results

in three branches, including a higher amplitude branch (Khalak & Williamson 1999).

Several other parameters affecting the response of the cylinder have also been identified
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through vortex-induced vibration research. They are the Reynolds number and the

mechanical damping of the body in the fluid. Their effects on VIV, however, are not

as clear as the effects due to the flow speed and the mass ratio.

In contrast to the amount of research on a transversely oscillating cylinder, only

a few studies have examined other types of vortex-induced vibration, such as vortex-

induced vibration of a tethered cylinder (Ryan et al. 2007; Carberry & Sheridan 2007) or

a tethered sphere (Govardhan & Williamson 1997; Pregnalato 2003). These studies have

shown some similarities to the response of a transversely vibrating cylinder. However,

these vortex-induced vibrations have been also shown to have significant differences

in their response, and have introduced new parameters to consider. For instance, the

tether angle and its length are found to have a large effect on the vortex-induced

vibration of a tethered body.

Based on the considerable knowledge reviewed here, the present study investigates

the vortex-induced vibration of a tethered body as a different type of vortex-induced

vibration using several parameters, such as the flow speed, the mass ratio, the Reynolds

number and the tether elasticity. A particular mass ratio of unity, which corresponds to

the case of neutrally buoyant body, will be considered due to the disappearance of the

gravity effect on its motion. For the first time, to the author’s knowledge, the effect of

elastic tether on the vortex-induced vibration of a tethered body in uniform flow is also

studied. The generic geometries of a cylinder and a sphere are chosen for the research

to focus on fundamental mechanisms behind, and to interconnect previous findings of

general vortex-induced vibrations.
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Chapter 3

Methodology and Validation

This chapter starts with the problem formulations of the tethered cylinder and the

sphere cases, resulting in sets of equations of motion. Following this, the implementation

of the adopted numerical method, featuring the coupled equations of motion for the fluid

and the body, is provided, and the determination of the controlling parameters for the

two types of tethered body ensues. The numerical method is explained mainly for the

tethered sphere (three-dimensional), as its reduction to the cylinder (two-dimensional)

can be easily achieved.

Validation of the numerical results for some selected parts of parameter space are

presented for both bodies. Finally, the experimental set-up and its details for the sphere

system are provided.

3.1 Problem Formulation: Tethered Circular Cylinder

The tethered cylinder system is shown in figure 3.1. For this system, the forces acting

on the body are tether tension T , buoyancy force B, body weight W , streamwise fluid

force Fx and transverse fluid force Fy. In the first instance, the tether is assumed to

be inextensible, i.e. there is no movement along the tether. However, in the subsequent

studies of an elastically tethered cylinder, this restriction is removed. It is also assumed

that the tether is attached to the centre of mass of the body. Negligible effect of the

precise form of this attachment has been shown as long as the tether length L is long

enough compared to the diameter D of the body, e.g. L ≥ 5D. (Pregnalato 2003; Ryan

et al. 2004a).

The tension acting along the tether of the cylinder is related to the other forces by

the equation 3.1

T = Fx cos θ + (Fy + B − W ) sin θ, (3.1)

41



Figure 3.1: Coordinate system and forces on a tethered cylinder.

where θ is the tether angle measured from the streamwise (x) axis to the cylinder centre.

For reference, θ + ϑ = 90o where ϑ is the layover angle of Ryan et al. (2004a).

The motion of the cylinder in a Cartesian coordinate system is described by the

equations 3.2 and 3.3

mẍ = Fx − T cos θ, (3.2)

mÿ = (Fy + B − W ) − T sin θ. (3.3)

After substituting equation 3.1 into equations 3.2 and 3.3 and nondimensionalising,

the equations of motion can be rewritten as

ẍ

γ
=

1

m∗

[(

1 −
(

x

L

)2)

Cx −
(

Cy + (1 − m∗)α

)

y

L

x

L

]

, (3.4)

ÿ

γ
=

1

m∗

[(

1 −
(

y

L

)2)(

Cy + (1 − m∗)α

)

−Cx
x

L

y

L

]

, (3.5)

The parameters used in equations 3.4 and 3.5 are given in table 3.1.

The details of the derivation of the dimensionless form of the equations of motion

and the meaning of parameters used will be provided in the section 3.2 dealing with

sphere motions, because the derivation for the sphere system is more complicated than

for the cylinder system and its reduction to the cylinder system is straightforward. For
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Expression Definition

x/L cos θ

y/L sin θ

Cx Fx/(1
2ρfAU2)

Cy Fy/(
1
2ρfAU2)

m∗ ρb/ρf

α π
2

gD
U2

γ 2
π

U2

D

Table 3.1: Expressions for the equations 3.4 and 3.5. ρf and ρb are the density of the fluid
and the cylinder respectively. The A is the projected area defined by A = DB where D and
B are the diameter and the length of the cylinder.

the same reason, the coordinate transformation to a non-inertial frame employed both

for the cylinder and the sphere will also be explained only for the sphere system.

3.2 Problem Formulation: Tethered Sphere

The tethered sphere system is described in figure 3.2. As in the cylinder system,

forces acting on the sphere are tether tension T , buoyancy force B, body weight W ,

streamwise fluid force Fx, transverse fluid force Fy. In addition, the lateral fluid force

Fz is considered for the sphere case.

The tension is linked to the other force components by

T = Fx cos θ + (Fy + B − W ) sin θ cos φ + Fz sin θ sinφ, (3.6)

where the tether angle θ is the angle to the sphere from the streamwise (x) axis, and φ

is the the inclination angle of the sphere in the crossflow plane (yz plane). This is just

a statement of radial force balance. Similar to the tethered cylinder system, the tether

angle plus the layover angle of Williamson & Govardhan (1997) equals 90o or π
2 .

The equations of motion for the sphere are given by

mẍ = Fx − T cos θ, (3.7)

mÿ = (Fy + B − W ) − T sin θ cos φ, (3.8)

mz̈ = Fz − T sin θ sin φ. (3.9)
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Figure 3.2: Coordinate system and forces on a tethered sphere.

In order to avoid repetition, only the x component of the equations of motion is

dealt with in detail. Substituting equation 3.6 into equation 3.7 and collecting terms

yields

mẍ = Fx sin2 θ − {(Fy + B − W ) cos φ + Fz sin φ} sin θ cos θ. (3.10)

Equation 3.10 is in dimensional form, so the dimensionless forms of the fluid forces

and buoyancy are used to obtain

ẍ =

(

ρf

ρb

)(

U2 A

2V

)[

Cx sin θ −
{(

Cy +

(

1 − ρf

ρb

)

2 g V
U2 A

)

cos φ + Cz sin φ

}

cos θ

]

sin θ.

(3.11)

where V is the volume of the sphere and A is the frontal area of the sphere. Cx, Cy

and Cz are the force coefficients in the x, y and z directions respectively.

Figure 3.2 is used to relate the polar coordinates in equation 3.11 to Cartesian

coordinates. The acceleration of the sphere thus becomes

ẍ =

(

ρf

ρb

)(

U2 A

2V L2

)[

(L2 − x2)Cx −
{(

Cy +

(

1 − ρf

ρb

)

2 g V
U2 A

)

y + Cz z

}]

. (3.12)

In equation 3.12, the parameters are defined as follows for the sphere system.

α =
2g V
U2 A

=
2g (πD3/6)

U2 (πD2/4)
=

4

3

gD

U2
, (3.13)

γ =
U2 A

2V =
U2 (πD2/4)

2 (πD3/6)
=

3

4

U2

D
. (3.14)
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Due to the difference in V and A to the cylinder system, the parameters α and γ

for the sphere is different to those for the cylinder as shown in equations 3.13 and 3.14.

Note that α has no dimension, whereas γ has units of acceleration.

Substitution of the above parameters into equation 3.12 results in the equations of

motion for the tethered sphere including the y and z components

ẍ

γ
=

1

m∗

[{

1 −
(

x

L

)2}

Cx −
(

Cy + (1 − m∗)α

)

y

L

x

L
+ Cz

z

L

x

L

]

, (3.15)

ÿ

γ
=

1

m∗

[{

1 −
(

y

L

)2}(

Cy + (1 − m∗)α

)

− Cx
x

L

y

L
+ Cz

z

L

y

L

]

, (3.16)

z̈

γ
=

1

m∗

[{

1 −
(

z

L

)2}

Cz − Cx
x

L

z

L
+

(

Cy + (1 − m∗)α

)

y

L

z

L

]

. (3.17)

The parameters used in equations 3.15 to 3.17 are presented in table 3.2.

Expression Definition

x/L cos θ

y/L sin θ cos φ

z/L sin θ sin φ

Cx Fx/(1
2ρfAU2)

Cy Fy/(
1
2ρfAU2)

Cz Fz/(
1
2ρfAU2)

m∗ ρb/ρf

α 4
3

gD
U2

γ 3
4

U2

D

Table 3.2: Expressions for the equations 3.15 to 3.17. ρf and ρb are the density of the fluid
and the cylinder respectively. The A is the projected area defined by A = πD2/4 where D is
the diameter of the sphere.

3.3 Coordinate Transformation to a Tethered Body

Solving fluid-structure interaction problems generally involves the use of deforming or

moving computational domains. The arbitrary Lagrangian-Eulerian (ALE) formula-

tion has been used successfully in the past for spectral discretisation (Warburton &

Karniadakis 1996). However, in the present study of the tethered sphere (also of the

tethered cylinder), the difficulty of using the deforming mesh is avoided by attaching
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the reference frame to the sphere centre. From figure 3.2, this mapping is given by the

following transformation:

x = x′ − xB(t),

y = y′ − yB(t),

z = z′ − zB(t)

(3.18)

where

xB(t) = L cos(θ(t)),

yB(t) = L sin(θ(t)) cos(φ(t)),

zB(t) = L sin(θ(t)) sin(φ(t)).

(3.19)

Similarly, the velocity and pressure fields are transformed as follows.

u = u′ − dxB

dt
,

v = v′ − dyB

dt
,

w = w′ − dzB

dt
,

p = p′.

(3.20)

Equation 3.18 provides the relationship between an inertial coordinate system (de-

noted by a prime) and the non-inertial coordinate system attached to the sphere. These

equations for the tethered sphere and the Navier-Stokes equations for fluid (to be dis-

cussed in section 3.4.1) are solved in the non-inertial frame.

3.4 Numerical Method

Assumptions are made to simulate the fluid flow. The fluid is assumed to be a con-

tinuum, Newtonian, and incompressible. These are standard assumptions and their

details can be found in many textbooks (Munson et al. (2006) for example). With

these assumptions, the Navier-Stokes and continuity equations governing the unsteady

viscous motion of the fluid are given by

∂V

∂t
= − 1

ρf

∇P + νL(V) − N(V) (3.21)

and

∇ ·V = 0, (3.22)
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where V and P are the fluid velocity field and the pressure field, respectively. N(V)

represents the nonlinear convection term defined as

N(V) = (V · ∇)V, (3.23)

νL(V) is the linear diffusion term, and the linear operator L(V) is defined as

L(V) = ∇2V. (3.24)

For the present problem, the displacement of the body (xB) and its velocity (uB)

at the new time instance are unknown. Therefore, the coupled differential equations

describing the body motion and flow field have to be solved. If we apply the coordinate

transform that V = u + uB to equations 3.21 and 3.22, these can be rewritten,

∂u

∂t
= −∇p +

1

Re
L(u) − N(u) + A(xB ,u, p), (3.25)

∇ · u = 0, (3.26)

where A(xB ,u, p) is an additional acceleration term introduced by the transformation

and is equivalent to the acceleration of the body. Note p is the kinematic pressure,i.e.,

P/ρf . These equations were solved numerically to simulate the tethered body VIV.

Note that the following subsections focus on the tethered sphere VIV as its reduction

to the tethered cylinder VIV is straightforward as mentioned previously.

3.4.1 Time-advancement of governing equations

A three-step time-splitting scheme was employed in the solution of the governing equa-

tions in time. The three substeps account for the convection, pressure and diffusion

terms of the coupled Navier-Stokes equations. The acceleration term is solved in the

convection substep. As a result, the three substeps are provided as follows:

û− u(n) = −
∫ t+∆t

t

N(u) dt + (u
(n+1)
B − u

(n)
B ), (3.27)

ũ− û = −
∫ t+∆t

t

∇p dt, (3.28)

u(n+1) − ũ = − 1

Re

∫ t+∆t

t

L(u) dt. (3.29)

Here, (n) represents the present timestep, and û and ũ are the intermediate velocity

fields at the end of convection and pressure substeps, respectively. Each substep uses

the solution from the previous substep as the starting condition.
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3.4.1.1 Convection substep

To proceed with the solution of the coupled equations 3.25 and 3.26 with unknown

displacement of the sphere at (n + 1), a ‘predictor-corrector’ scheme was adopted.

For the first time through the loop, a ‘prediction’ for the velocity and for the dis-

placement (u
(n+1)∗
B and x

(n+1)∗
B ) of the sphere are given by

u
(n+1)∗
B = 3u

(n)
B − 3u

(n−1)
B + u

(n−2)
B , (3.30)

x
(n+1)∗
B = x

(n)
B +

(

5

12
u

(n+1)∗
B +

8

12
u

(n)
B − 1

12
u

(n−1)
B

)

∆t. (3.31)

Note that equation 3.30 is just a quadratic extrapolation from known values at the

previous timesteps.

With these predictions, equation 3.27 is solved explicitly using a third-order Adams-

Bashforth scheme given by

û = u(n)

+

[

23

12
N(u)(n) − 16

12
N(u)(n−1) +

5

12
N(u)(n−2)

]

∆t

−
(

u
(n+1)∗
B − u

(n)
B

)

.

(3.32)

Note that, for subsequent iterations, a semi-implicit method is used instead and is

provided later. Following this, the remaining two substeps are solved to obtain the

first estimate of the fluid velocity field u(n+1). These two substeps are explained in

section 3.4.1.2 and 3.4.1.3.

Once the velocity field is estimated, a ‘correction’ to u
(n+1)
B and x

(n+1)
B commences.

The forces on the sphere are calculated from the estimate of the fluid velocity at the

end of the time (u(n+1)), and are used to get the acceleration of the body at that time

(ẍ
(n+1)
B ) with equations 3.15 to 3.17. The equations for this correction scheme are given

by

u
(n+1)
B = u

(n)
B +

(

25

24
ẍ

(n+1)
B − 2

24
ẍ

(n)
B +

1

24
ẍ

(n−1)
B

)

∆t, (3.33)

x
(n+1)
B = x

(n)
B +

(

5

12
u

(n+1)
B +

8

12
u

(n)
B − 1

12
u

(n−1)
B

)

∆t. (3.34)

This finalises the first iteration of the convection substep.

For subsequent iterations, a semi-implicit, third-order Adams-Moulton method is

employed to improve the stability of the numerical scheme, and to utilise the fluid
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information obtained from the previous iterations.

û = u(n)

+

[

5

12
N(u)(n+1) +

8

12
N(u)(n) − 1

12
N(u)(n−1)

]

∆t

−
(

u
(n+1)
B − u

(n)
B

)

.

(3.35)

As in the first iteration, the two substeps are solved to obtain a new estimate of u(n+1).

The correction then starts with equation 3.33. However, an under-relaxation pa-

rameter ε is introduced to improve stability before updating the sphere displacement.

Therefore, the correction procedure from the second iteration is given by

u∗

B = u
(n)
B +

(

25

24
ẍ

(n+1)
B − 2

24
ẍ

(n)
B +

1

24
ẍ

(n−1)
B

)

∆t, (3.36)

u
(n+1)
B = u

(n)
B + ε

(

u∗

B − u
(n)
B

)

, (3.37)

x
(n+1)
B = x

(n)
B +

(

5

12
u

(n+1)
B +

8

12
u

(n)
B − 1

12
u

(n−1)
B

)

∆t. (3.38)

3.4.1.2 Pressure substep

The second substep solves equation 3.28 using a second-order Adams-Moulton method,

giving

ũ = û− ∆t

(

1

2
∇p(n+1) +

1

2
∇p(n)

)

, (3.39)

where ũ is a second intermediate velocity field. By taking the divergence of equa-

tion 3.39 and imposing the continuity constraint for ũ, a Poisson equation for the

pressure is obtained

∇2p(n+ 1

2
) =

1

∆t
∇ · û. (3.40)

The pressure field at (n + 1
2) could be obtained by solving equation 3.40, and this pres-

sure field is then substituted back into equation 3.39 to obtain the second intermediate

velocity field ũ. This equation has to be solved with a Neumann boundary condition

for pressure on the boundary surface, reducing splitting errors. This pressure boundary

condition is explained in section 3.4.3.

3.4.1.3 Diffusion substep

The third and final substep involves solving equation 3.29 for the diffusion terms as

follows:

u(n+1) = ũ + ν∆tL(u). (3.41)

49



This is performed implicitly using a Crank-Nicolson method that is second-order ac-

curate in both space and time, together with a θ scheme modification (Canuto et al.

2006).

Karniadakis et al. (1991) demonstrated that the above scheme produces time differ-

encing errors in the velocity field that are one order smaller in ∆t than the correspond-

ing error in the boundary divergence. In particular, a time-treatment of first-order

for equation 3.41 can be expected to produce second-order results in the velocity field.

Note that higher-order accurate treatments are generally less stable and require reduced

timesteps.

3.4.2 Spatial discretisation: Spectral-element/Fourier-spectral method

The spatial discretisation of the equations, is implemented using a nodal-based spectral-

element method. This is a method from the finite-element class, where the computa-

tional domain is divided into a series of macro-elements, and a continuous solution is

obtained over each element.

A two-dimensional spectral-element method is used for the tethered cylinder. Its

implementation for a freely moving cylinder is described in Leontini (2007), and will

not be covered in detail here. An extension of the spectral-element method to three-

dimensional space was developed and applied to the geometries of a cylinder (Thompson

et al. 1996), a sphere (Thompson et al. 2001) and a torus (Sheard et al. 2003). This

is called a spectral-element/Fourier spectral method as a Fourier series expansion is

applied in the third dimension. The spectral-element/Fourier spectral method employed

for the simulation of tethered sphere is presented briefly in this section.

The method starts by considering the flow past a stationary sphere in cylindrical

coordinates z, r and φ, with the origin located at the sphere centre. The acceleration

term in equation 3.25 is neglected for the following formulation, but could be dealt with

in the same way as is explained in this section. In this formulation, the z axis is parallel

to the free stream velocity U , r is the distance to the z axis and φ is the azimuthal

angle. Due to the homogeneity in the azimuthal direction, the velocity and pressure

field can be decomposed using a Fourier series expansion in φ by

u(z, r, φ, t) =
M−1
∑

m=0

um(z, r, t)eimφ, (3.42)

where m is an integer wavenumber. Substituting equation 3.42 into the governing

equation (equation 3.25 without the acceleration term), and applying the change of
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variables

ṽm = vm + iwm,

w̃m = vm − iwm

(3.43)

gives

∂um

∂t
+ Fm

[

N(u)

]

z

= − 1

ρf

∂pm

∂z
+ ν

(

∇2
rz −

m2

r2

)

um,

∂ṽm

∂t
+ F̃m

[

N(u)

]

r

= − 1

ρf

(

∂

∂r
− m

r

)

pm + ν

(

∇2
rz −

(m + 1)2

r2

)
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(3.45)

F̃m

[

N(u)

]

r

= Fm

[

N(u)

]

r

+ iFm

[

N(u)

]

φ

,

F̃m

[

N(u)

]

φ

= Fm

[

N(u)

]

r

− iFm

[

N(u)

]

φ

,

(3.46)

and Fm refers to a Fourier transform in φ.

Throughout this process, the time-integration of equation 3.21 results in a set of

Helmholtz-like equations for the velocity and pressure modes given by

1

r

∂

∂r

(

r
∂

∂r
um

)

− m2

r2
um − λ2um = g, (3.47)

where um is either a velocity or pressure Fourier mode, and the constant λ2 is equal to

zero for the pressure. To simplify the notation, equation 3.47 may be written as

(∇2 − λ2)Φ = g, (3.48)

subject to Dirichlet or Neumann boundary conditions on the boundaries. This com-

pletes the reformation of the governing equations.

The solution of the equation 3.48 is obtained by a method of weighted residuals

(MWR) with Galerkin projection, choosing the test function and the weighting function

from the same family of functions. A variational form of equation 3.48 used to find the

solution is given by
∫

Ω
∇Ψ · ∇Φ dx + λ2

∫

Ω
ΨΦ dx = −

∫

Ω
Ψg dx, (3.49)
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where Ω represents the computational domain, x represents the physical coordinate, Ψ

is the weighting function, and Φ is the test function.

To calculate the integral of equation 3.49 over the entire computational domain, it

is first evaluated over each element separately, and then the elemental contributions are

summed together. Each quadrilateral element is mapped to a square defined over the

range [-1, 1] in both directions. The computational coordinates are just the orthogonal

coordinates of this square. The internal node points in each element are then defined

at the Gauss-Lobatto-Legendre (GLL) quadrature points of this unit square, which

simplifies the approximation of the integral. The resulting equation is then

K
∑

k=1

N
∑

p=0

N
∑

q=0

ρpqJ
k
pq

(

∇Ψ · ∇Φ

)

ξk
pq

+ λ2
K

∑

k=1

N
∑

p=0

N
∑

q=0

ρpqJ
k
pq

(

ΨΦ

)

ξk
pq

= −
K

∑

k=1

N
∑

p=0

N
∑

q=0

ρpqJ
k
pq

(

Ψg

)

ξk
pq

,

(3.50)

where K is the number of macro-elements, N + 1 is the number of quadrature points,

ξk
pq are the Gauss-Lobatto points, ρpq are the corresponding weights, and Jk

pq are the

Jacobians of the transformation to the computational domain.

Lagrange polynomials of order N are chosen both for test functions and weighting

functions, and are defined as

Φi(ξ) = Ψi(ξ) = − (1 − ξ2)L
′

N (ξ)

N(N + 1)LN (ξi)(ξ − ξi)
. (3.51)

These polynomials are also known as the GLL interpolants. The chosen nodes ξi are

the solutions of the equation

(1 − ξ2)L
′

N (ξ) = 0, (3.52)

where LN (ξ) is the Legendre polynomial of order N .

The GLL interpolants are used in all elements in the entire domain. This departs

somewhat from the method employed by Tomboulides & Orszag (2000), who used

Lagrange polynomials based on zeroes of Jacobi polynomials for the elements adjacent

to the axis of symmetry and GLL interpolants in the rest of the elements. In the present

approach, the singular terms in equation 3.48 are set equal to zero at the axis. This

is equivalent to assuming that values go toward zero faster than r2 as r approaches 0.

This retains the efficiency of standard spectral-element techniques as well as preserving

spectral convergence for typical axisymmetric problems (Gerritsma & Phillips 2000).
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3.4.3 Boundary Conditions and Convergence

A no-slip condition is applied at the body surface both for the cylinder and the sphere.

The velocity at the upstream boundary of the body, and those to either side, is set to

the sum of the freestream velocity plus the negative of the body motion, to account for

the accelerating frame of reference attached to the body. The transverse velocity of the

body is solved for during the simulation, as explained in the section 3.4.1.1.

Imposed at the boundary downstream of the body is the condition ∂u

∂n
= 0, where n

is the unit normal vector. While this assumption is not completely physical, as long as

the outlet boundary is sufficiently far from the body, and the Reynolds number is low

enough so that vortex structures can exit the domain, this does not pose a significant

problem. A domain size study was performed to ensure that this did not affect the

results.

First-order (in time) boundary conditions are derived for the pressure at the body

surface and freestream boundaries. The result of this derivation is a condition on the

gradient of the pressure normal to the boundary, and is given by

n · ∇p(n+ 1

2
) =

dp(n+ 1

2
)

dn
= n ·

[

N(u)(n) +
1

Re
(∇× (∇× u(n)))

]

on Ω. (3.53)

where Ω is the parts of the domain boundary on which the velocity is defined.

The use of this first-order accurate condition for the pressure resulted in second-

order accuracy for the velocity. Details of this scheme and its derivation can be found

in (Karniadakis et al. 1991). The boundary conditions are completed by imposing a

constant pressure across the domain at the outlet boundary.

The convergence characteristics are improved by employing a under-relaxation fac-

tor (ε) in equation 3.37. The relaxation parameter was introduced after extensive test-

ing; without it, it was found that for some parameter combinations, the method was

unstable except for very small timesteps. This was especially the case for small mass

ratios. The introduction of under-relaxation improves the convergence quality consid-

erably. The choice of an optimal value for ε is highly problem-specific, and extensively

studied by Ryan (2004); Pregnalato (2003) for tethered bodies. This parameter does

not affect the accuracy provided the equations are converged at each timestep before

moving to the next timestep.

The local truncation errors introduced by the approximations are typically O(∆t3)

both for the third-order Adams-Bashforth predictors and the Adams-Moulton correc-
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tors used, although overall the combined problem is second-order accurate in time.

Even though the errors are small, the position of the sphere drifts away from the sur-

face defined by the tether, although only marginally over a single time step. However,

when considering the long time traces that are needed for accurate determinations of

oscillation amplitudes and frequencies for example, this position drifting is no longer in-

significant. As a result, the sphere position is projected onto the surface defined by the

tether and, for consistency, the velocity of the sphere is also projected. This stabilises

the scheme without affecting the accuracy.

Finally, convergence of the system at each timestep is monitored by three conver-

gence criteria. These are represented by the following formulae:

|∆uB|
|uB|

< utol, (3.54)

|∆umax|
|umax|

< utol, (3.55)

|∆FB|
|FB|

< Ftol. (3.56)

Equation 3.55 states that the normalised change in the velocity of the sphere between

iterations must be less than some tolerance utol, whereas equation 3.56 asserts that the

normalised maximum change in the velocity field between iterations must be less than

the tolerance utol at any point in the entire domain. The last convergence criterion

ensures that the normalised change in the force of the body between iterations is less

than some tolerance Ftol. For all of the simulations, the values of utol and Ftol were

kept at 0.001 and 0.001, respectively. If these criteria are not met, then the iteration

continues. However, if equations 3.55 to 3.56 are satisfied, then we continue to the next

step.

3.5 Definition of Controlling Parameters

There have been a number of suggestions of the most appropriate parameters to use to

characterise VIV of bluff bodies. The reduced velocity U∗ has been extensively used,

and most studies in VIV have adopted it as a controlling parameter to present results.

To define U∗, the natural frequency of the body fn is used. A reason why fn is chosen

as a normalising factor is that it is independent of the flow condition for a transversely

vibrating circular cylinder, which is the target body of much VIV research. However,

the adoption of fn is a shortcoming for tethered body VIV due to its dependence
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on the flow condition. As alternatives, the Fr and its modified version, the reduced

Froude number Fr′, have been suggested for the tethered body VIV (Ryan et al. 2007;

Carberry & Sheridan 2007). The appropriateness of Fr related parameters, however,

has not been sufficiently verified for a wide range of body mass.

In the current study, the Re and the U∗ are used to present the results for a couple

of reasons. Firstly, the Re is chosen because of the focus on neutral buoyancy of the

tethered bodies. When m∗ = 1, there is no buoyancy (gravity) effect, thus the modified

Froude number (Fr′), suggested in recent studies of the tethered cylinder, and the

conventional U∗ are of no use. For example, the Fr′ has the value of ∞, and there is

virtually no restoring force for long tethers so U∗ has a very large value. Therefore,

the Re is used as a parameter to characterise the system behaviour. for bodies with

neutral buoyancy in the present results.

Secondly, U∗ is adopted in order to compare the results of buoyant tethered bodies

with those of previous research. Only a few studies have dealt with the VIV of tethered

bodies, and most of these, particularly for the tethered sphere case, have used U∗ to

present the results, in spite of its inadequacy to tethered body VIV at high U∗. For

this reason, U∗ is used for the results of buoyant tethered bodies, but its dependence

on the flow condition is considered simultaneously.

3.6 Validation: Tethered Cylinder Case

A detailed study to validate the numerical results has been performed. This was done by

comparing key properties of simulation results with different domain sizes and the grid

resolutions. The latter can be done using h-refinement (i.e., adding more elements) and

p-refinement (i.e., increasing the polynomial order within each element) (Karniadakis

& Sherwin 2005) in the spectral-element context.

Firstly, a mass ratio was fixed at unity to consider the neutrally buoyant case, and

the results using four different meshes were compared at selected Reynolds numbers.

Having determined a suitable mesh, a grid resolution study was performed by varying

the order of the tensor-product polynomials employed in the spectral-element method.

To check the validity for the cases of m∗ 6= 1, a grid resolution study for the m∗ = 0.833

case was also carried out.

For the validation of the elastic tether results, the mass ratio was kept at m∗ = 0.833,

and the polynomial order was changed. One supercritical value and one subcritical value
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of parameter kt (see section 6.1) were chosen.

3.6.1 Mesh Independence

Four meshes were used to check their suitability for tethered cylinder VIV. As shown

in figure 3.3, C1 is the smallest mesh, and C2 is the second smallest with longer outlet

length than C1. C3 is the largest mesh. C4 is a similar mesh used in Ryan et al. (2004a),

having similar dimension to C3. It should be noted that the C3 mesh was made after an

extensive review of previous studies. Its domain size, the number of macro-elements,

and the size of the macro-element in the near wake were determined based on the

meshes used in many studies of fixed cylinders (Barkley & Henderson 1996; Thompson

et al. 1996) and oscillating cylinders (Blackburn & Henderson 1999; Blackburn et al.

2001; Leontini et al. 2007). The domain size of each mesh is summarised in table 3.3.

Mesh Inlet Side Outlet M

C1 5D 5D 10D 356
C2 5D 5D 15D 476
C3 15D 15D 20D 652
C4 15D 15D 25D 518

Table 3.3: Domain size of meshes where D is the diameter of the cylinder.

The key properties that were chosen to be compared are the root-mean-square

(RMS) of the displacement and the oscillation frequency in the x and y directions.

The mass ratio m∗ was set to unity, and the tether length was set to 10D. Two

Reynolds numbers of 100 and 200 were selected. Re = 100 is chosen as it represents the

increasing St range in the St-Re chart (Williamson 1988a). The Re = 200 is selected

as the highest Re for two-dimensional simulations. The sixth-order tensor-product

polynomials were used for the domain study.

Table 3.4 shows the key properties when Re = 100 and m∗ = 1. The frequencies and

the force coefficients in both directions show values different to those of C3, whereas

C4 shows similar values of these properties. Based on these, C1 and C2 meshes have a

significant blockage effect.

Table 3.5 shows the results when Re = 200. Similar to the Re = 100 case, C1 and

C2 produce quite different results to those for C3 and C4.
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C1 C2

C3

C4

Figure 3.3: Meshes for tethered cylinder.

Therefore, it is determined that C1 and C2 have a significant blockage effect. The

blockage ratio for meshes C3 and C4 is 1/30. The domain size of these two meshes is

also consistent with many previous studies of oscillating cylinder using various meshes.
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Considering the elastic tether cases which may exhibit large oscillations, C3 is chosen

for the all simulations of tethered cylinder VIV in this thesis.

Mesh x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

C1 0.0004 0.1678 0.0413 0.1678 1.5201 0.0132
C2 0.0004 0.1678 0.0411 0.1678 1.5199 0.0131
C3 0.0005 0.1465 0.0483 0.1465 1.2897 0.0125
C4 0.0005 0.1465 0.0478 0.1465 1.2893 0.0123

Table 3.4: Result using different meshes when Re = 100 and m∗ = 1. x∗

RMS , f∗

x and Cx are
root-mean-square value of the displacement, frequency of the oscillation and force coefficient
in the x direction respectively. y∗

RMS , f∗

y and Cy correspond to those in the y direction.

Mesh x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

C1 0.0002 0.1831 0.0693 0.1831 1.3820 0.0006
C2 0.0002 0.1831 0.0692 0.1831 1.3815 0.0005
C3 0.0002 0.1709 0.0701 0.1709 1.2069 0.0006
C4 0.0002 0.1709 0.0709 0.1709 1.2076 0.0006

Table 3.5: Result using different meshes when Re = 200 and m∗ = 1. The properties are
the same as in table 3.4.

3.6.2 Grid Resolution Study

Using the C3 mesh, the order of Lagrange polynomials was changed to study grid

resolution for the tethered cylinder VIV. As the polynomial order is raised, the grid

resolution increases. The polynomial order, p, was varied from 4 to 9. Note that N ×N

internal points within each macro-element corresponds to a polynomial order of N − 1.

Firstly, the inelastic tethered cylinder case is tested. The properties chosen for

comparison are the same as those used in the domain size studies. Tables 3.6 and 3.9

show the results for Re = 100 and Re = 200. The values for the x direction show no

difference to the number of decimal places shown in the tables. The values for the y

direction show a small difference, but all the values are well within 1%, except for Cy

of 5× 5 at Re = 100. Based on this, the polynomial of order p = 6 (7× 7 internal node
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points) is selected, and should give an accurate solution for this study without huge

computational cost.

N × N x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

5 × 5 0.0005 0.1465 0.0486 0.1465 1.2897 0.0130
6 × 6 0.0005 0.1465 0.0485 0.1465 1.2896 0.0116
7 × 7 0.0005 0.1465 0.0482 0.1465 1.2898 0.0126
8 × 8 0.0005 0.1465 0.0484 0.1465 1.2899 0.0117
9 × 9 0.0005 0.1465 0.0482 0.1465 1.2899 0.0126

10 × 10 0.0005 0.1465 0.0482 0.1465 1.2899 0.0122

Table 3.6: Result using different polynomial orders when Re = 100 and m∗ = 1 with
inelastic tether. The properties are the same as in table 3.4.

N × N x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

5 × 5 0.0002 0.1678 0.0701 0.1678 1.2077 0.0007
6 × 6 0.0002 0.1709 0.0701 0.1709 1.2069 0.0006
7 × 7 0.0002 0.1709 0.0702 0.1709 1.2071 0.0005
8 × 8 0.0002 0.1709 0.0703 0.1709 1.2074 0.0005
9 × 9 0.0002 0.1709 0.0703 0.1709 1.2075 0.0005

10 × 10 0.0002 0.1709 0.0704 0.1709 1.2076 0.0005

Table 3.7: Result using different polynomial orders when Re = 200 and m∗ = 1 with
inelastic tether. The properties are the same as in table 3.4.

Secondly, grid resolution is checked for the VIV of an elastically tethered sphere.

The Reynolds number was fixed at Re = 200 and the tether length was set to L =

10D. As the effect of elasticity is prominent in the m∗ 6= cases, the mass ratios were

chosen to be m∗ = 0.833. Two elastic cases were selected: one (kt = 0.1) below the

critical value of the parameter kt, and the other (kt = 5) above the critical value. The

parameter kt and its critical value are introduced and explained detail in chapter 6.

Tables 3.8 and 3.9 show the results. Regardless of the kt values, there is little

dependence on the polynomial order, p, when the p ≥ 5. Considering the computational

cost and the accuracy of the converged solution, the polynomial order of p = 5 is chosen

for the VIVs of elastically tethered cylinder. Note that this p value, which is lower than

p = 6 for the inelastic case, is chosen because of the longer time to reach the asymptotic

state for the elastic case than that for the inelastic case.
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N × N x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

5 × 5 0.0104 0.1678 0.0733 0.1678 1.1979 0.0011
6 × 6 0.0104 0.1678 0.0733 0.1678 1.1971 0.0013
7 × 7 0.0104 0.1678 0.0733 0.1678 1.1975 0.0015
8 × 8 0.0104 0.1678 0.0734 0.1678 1.1978 0.0016
9 × 9 0.0104 0.1678 0.0734 0.1678 1.1979 0.0016

10 × 10 0.0104 0.1678 0.0735 0.1678 1.1980 0.0016

Table 3.8: Result using different polynomial orders when the tether is elastic (kt = 0.1) and
m∗ = 1. The properties are the same as in table 3.4.

N × N x∗

RMS f∗

x y∗RMS f∗

y Cx Cy

5 × 5 0.0076 0.1678 0.0701 0.1678 1.1944 -0.0067
6 × 6 0.0076 0.1678 0.0701 0.1678 1.1937 -0.0070
7 × 7 0.0076 0.1678 0.0701 0.1678 1.1940 -0.0071
8 × 8 0.0076 0.1678 0.0702 0.1678 1.1943 -0.0071
9 × 9 0.0076 0.1678 0.0702 0.1678 1.1944 -0.0071

10 × 10 0.0076 0.1678 0.0703 0.1678 1.1945 -0.0071

Table 3.9: Result using different polynomial orders when the tether is elastic (kt = 5) and
m∗ = 1. The properties are the same as in table 3.4.

3.7 Validation: Tethered Sphere Case

A validation study for tethered sphere VIV has also been performed. Similar to the

tethered cylinder case, a nearly optimal mesh was first constructed based on meshes

from the previous studies for fixed and oscillating spheres. The key fluid properties and

sphere motions for different domain sizes and the grid resolutions were compared to

determine the grid, which generates accurate and computationally practical solutions.

3.7.1 Mesh Independence

Three meshes shown in figure 3.4 were used to validate the numerical results. In

particular, S1 is constructed after an extensive search of the literature dealing with the

flow simulations around a sphere. From the literature, it was reported that for a fixed

sphere in a freestream, the inlet extent and radial extent of 5D and 10D show little

difference in terms of fluid properties (Tomboulides & Orszag 2000; Pregnalato 2003).

In addition, it was also reported that the result of the outlet extent of 20D exhibits
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little difference to that of 40D (Tomboulides & Orszag 2000; Ghidersa & Dušek 2000).

With these findings, the radial and inlet extent of the mesh S1 was set to 5D, and

the outlet extent set to 20D, for computational efficiency with marginal error in the

solutions relative to the unconfined case.

S1

S2

S3

Figure 3.4: Meshes for tethered sphere.

Care was taken to decide the element size close to the sphere. The size of the

elements adjacent to the sphere was chosen according to the boundary layer thickness for

axisymmetric laminar boundary layers. From estimates of the boundary layer thickness,

the required size of the elements was derived following (Tomboulides & Orszag 2000;

Gottlieb & Orszag 1977) for spectral methods. According to this requirement, the

element thickness of all meshes was set to 0.1D, which allows polynomial order down

to 4 for Re = 1000. A quick calculation shows that polynomials of order 5 can be used

for accurate resolution of the boundary layer, even for a Reynolds number of Re = 1000.

S2 and S3 meshes were used to test whether the S1 mesh has an excessive blockage

effect. These meshes were extended from the S1 mesh to have the longer inlet and the

longer radial extent. The domain size of each mesh is presented in table 3.10.

The three-dimensional mesh generated by rotating the S1 mesh around the axis of

symmetry is shown in figure 3.5, with all its internal node points. This gives a better

understanding of the size and the resolution of the mesh used for the tethered sphere
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Mesh Inlet Side Outlet M

S1 5D 5D 20D 239
S2 15D 5D 20D 251
S3 15D 15D 40D 338

Table 3.10: Domain size of meshes.

simulations.

At Re = 300, the flow past a stationary sphere is known to be unsteady and char-

acterised by the presence of periodically shed vortices. In addition, the tethered sphere

shows a periodic oscillation around its mean radial position with amplitude around

0.8D at this Reynolds number. Note that this oscillation and radial mean position are

some of the largest values (even though it is small in magnitude) from the tethered

sphere simulations at various Reynolds numbers within periodic regimes. Based on

this, the Reynolds number of 300 was selected, then mean values of the tether angle,

and the radial oscillation amplitude were computed to compare the results.

Table 3.11 indicates that S1 is large enough for the tethered sphere simulation.

Figure 3.5: Three-dimensional mesh using the S1 mesh (p = 5) for the tethered sphere.

This is the full mesh used for the tethered sphere simulations. Only surface nodes are shown.
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Thus, the S1 mesh was used for all the simulations for the tethered sphere.

Mesh θo A∗

tot

S1 4.12 0.0346
S2 3.98 0.0351
S3 4.11 0.0348

Table 3.11: θ is the tether angle, and A∗

tot is the sum of the normalised amplitude in all
three directions. The results are for the tethered sphere with m∗ = 1.0 and 10D tether length
at Re = 300. All the values are the time-mean values.

3.7.2 Grid Resolution Study

Having checked the validity of the S1 mesh, the resolution of the mesh required to fully

resolve the flow was studied by changing the order of the Lagrange polynomial inter-

polants as in the tethered cylinder case. Due to the need for considerably increased com-

putational resources than for the cylinder case (because the flow is three-dimensional

not two-dimensional), the study was carried out at a Reynolds number of Re = 300 for

inelastically-tethered sphere. For comparison, the mean values of force coefficients in

each direction are calculated

N × N Cx Cy Cz

5 × 5 0.679 -0.0207 0.057
6 × 6 0.677 0.0025 0.062
7 × 7 0.677 0.0027 0.061
8 × 8 0.677 0.0027 0.061
9 × 9 0.678 0.0028 0.061

Table 3.12: Streamwise fluid force coefficient Cx, transverse fluid force coefficient Cy and
lateral fluid force coefficient Cz with the increase of polynomial interpolant p. The results are
for the tethered sphere with m∗ = 1.0 and 10D tether length at Re = 300. All coefficients
are the time-mean values.

Table 3.12 indicates that the most cost-effective simulations are obtained when

N × N = 6 × 6 (the polynomial order, p = 5). This is cost-effective in the sense that

all scales observed in the flow for the Reynolds numbers considered (less than 1000) are

clearly resolved, and running the simulations using p = 5 is much more efficient than

corresponding simulations using p = 8, which only marginally increases the solution
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quality. For these reasons, all simulations for the tethered sphere were performed

using fifth-order (p = 5) tensor-product Lagrange polynomial interpolants. For the

Reynolds numbers higher than 300, however, p value is increased from 6 (Re = 500) to

8 (Re = 800) to resolve the flow.

Having undertaken the intensive process of achieving an accurate mesh in the

streamwise-radial plane, another issue remains concerning the accuracy of the results

with respect to the azimuthal resolution. This was examined by altering the number

of Fourier planes in the azimuthal direction. Ghidersa & Dušek (2000) showed that 6

Fourier modes, i.e., 12 Fourier planes, were sufficient in capturing the secondary insta-

bility for Re = 275. However, the breaking of planar symmetry for Re ≥ 350 means that

more modes are required to accurately resolve the shed vortices not only because they

shed asymmetrically but also because they are coupled with the motion of the sphere.

Therefore, together with the need for additional resolution to handle an increase of Re

up to 800, 24 Fourier planes were selected. Other studies have shown this resolution

to be sufficient (Tomboulides & Orszag 2000). Nevertheless, to confirm the validity of

this number (24) of Fourier planes, force coefficients were calculated for the values of

24 and 32 at a higher Reynolds number of Re = 500. The difference of the coefficients

for each number of Fourier planes was less than 1%, and hence is not depicted here.

3.8 Experimental Method: Tethered Sphere Case

The experimental study to validate the numerical findings for the tethered sphere and

investigate the high Reynolds number cases were carried out in a recirculating free sur-

face water channel. Upstream of the working section, water flows through a honeycomb

and a thin wire mesh before going through a 9:1 contraction to the working section.

The combination of the screens and contraction yield a turbulence level of less than

1.0%. The schematic of the experimental set-up is shown in figure 3.6(a) (see Lee et al.

(2008) for the details).

Spheres of diameters of 16 mm and 9 mm made with Perspex were used for the

experiments. The spheres were manufactured to be separated in half and hollowed out

to adjust their buoyancy and mass distribution by putting some types of material inside.

In every experiment, a piece of sponge was weighted and inserted to set the mass ratio

to a specified value. A thin string with the diameter of 0.1 mm was connected to the

sphere as a tether, and then the tether was attached to a 0.315 mm wire which was
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vertically tensioned between the bottom of the working section and the ceiling right

above it as a support. The wire tension required to suppress vibration was caculated

and applied. To minimise the effect of vortex shedding of the wire, visual observations

and preliminary video analysis of moving sphere with a thicker wire of 0.5 mm and a

thinner wire of 0.15 mm were performed. Based on this observation, it was expected

that the effect of wire vortex shedding on the sphere movement is negligible although

a part of experiments (Re > 5000) were above the treshhold of vortex shedding for the

support wire.

For the 16 mm sphere experiments, a series of images of 8-bits grayscale were cap-

tured to locate the centre of the sphere. Each image had 1360 × 1024 pixels and a size

of 1.4 megabytes. 2 fps(frame per second), 4 fps and 8 fps were tested to record the

images, and 4 fps was used in most cases. For the 9 mm sphere, a normal video camera

with MiniDV tape was used to capture the sphere motion at a higher frequency of 25

fps. The recorded videos were converted to uncompressed avi files, and then each frame

in an avi file was exported to an image of 720 × 576 pixels. Sample images are shown

in figure 3.6(b).

To extract the position of the sphere recorded in the images, bitmap information

was used without filtering techniques. This postprocessing procedure consists of three

steps. In the first step, the diameter of the sphere in an image (usually the first of the

images) and the position of its centre were identified and saved. In the second step, the

number of bright bitmaps within a circle of the sphere diameter using the previously

(a) Set-up (b) Sample images

Figure 3.6: Schematics of the experimental set-up and sample images from the experiment.
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calculated position of the sphere centre is calculated. In the third step, an optimisation

function is used to find the updated and actual position of the sphere centre which

maximises the number of bright bitmaps within the circle.

This method is valid only when the image has a simple background and circular

object in it. To make the images better for processing, two or three spot lights were set

up to focus the moving sphere during the experiments. As a result, this method was

found to extract the sphere centre correctly, and was applied to process the images from

the sphere experiments. This procedure was performed using specially written Matlab

code using its image processing and optimisation libraries. The whole procedure was

tested for a set of bitmap image data by comparing the calculated centre and boundary

of the sphere with those through visual identification for all the images of the set.

3.9 Chapter Summary

In this chapter, theoretical and numerical formulations of the tethered cylinder and

the tethered sphere problems were presented. Note the equations of motion are not

nondimensional.

A spectral element method was used for the two dimensional simulations of the

tethered cylinder system. For the tethered sphere system, fully three-dimensional sim-

ulations were performed using a spectral-element/Fourier-spectral method with a global

Fourier spectral discretisation in the azimuthal (φ) direction.

Time advancement of the coupled equations of motion for the fluid and the cylin-

der/sphere was achieved using a time-splitting method with first-order pressure bound-

ary conditions, leading to second-order time accuracy for the velocity field.

For the neutrally buoyant tethered body, the Reynolds number was put forward as

the main parameter to characterise the behaviour. Since for this case the traditional

characterisation parameter, the reduced velocity, is effectively infinite.

Following this, numerical validation and resolution studies were presented which

allowed suitable mesh sizes and internal resolutions to be selected for the main studies

presented in the following chapters.

Finally, the set-up for the experimental studies of the tethered sphere was given and

the method to calculate the position of the sphere was briefly described.
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Chapter 4

VIV of a Tethered Circular
Cylinder

4.1 Introduction

This chapter presents the results of numerical simulations for a flow past tethered

cylinder, initially focusing on a neutrally buoyant cylinder (m∗ = 1). Next, numeri-

cal predictions for non-neutrally buoyant tethered cylinders are presented to identify

differences with the neutrally buoyant case.

4.2 VIV of a Neutrally Buoyant Cylinder: m∗ = 1

A schematic of the neutrally buoyant tethered cylinder is shown in figure 4.1. The simu-

lations were performed using high performance computers in the range of Re = 10 − 300.

The tether length was set to 10D for all cases in order to restrict the parameter space

covered. For all the simulations herein, the initial tether angle was set to 1o after

testing the same asymptotic states occurred with values of 0.2, 0.5, 1, 5 and 10o. As

δ << 1

Gravity

Lift + Buoyancy

Drag

y

x

Flow

Figure 4.1: Schematic of a neutrally buoyant tethered cylinder.
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the oscillation occurs predominantly in the transverse (y) direction, determination of

the different regimes was based on the amplitude and frequency of oscillation in this

direction, and layover angle measured from the y axis. The layover angle was adopted

to represent the time-mean position of the body, as it has been used in previous studies

on VIV of tethered bodies (Williamson & Govardhan 1997; Ryan et al. 2004a; Carberry

& Sheridan 2007; Ryan et al. 2007).

4.2.1 Time-mean position: Layover angle ϑ

Three regimes have been found as the Reynolds number increases. The first regime,

designated Regime I, covers the range of Re = 10 − 30. Regime II ranges from Re = 40

to 150, and Regime III from Re = 200 to 300. The boundaries separating these regimes

are indicated in figure 4.2. In Regime I, the mean position of the cylinder is very close

to, but not on, the x axis. Of note is that the layover angle ϑ = 90o indicates when

the cylinder is on the x axis. In Regime II, the cylinder offsets from the x axis and

moves aways from this axis as Re increases. As the Re further increases and exceeds

150, the approximate boundary between Regimes II and III, the cylinder returns close

to the x axis but not as close as in Regime I. Of interest is that the simulations starting

from the same absolute value of the initial tether angle (or layover angle), but with

opposite sign, attain the same absolute value of mean position but with opposite sign.

 88

 89

 90

 91

  0  50 100 150 200 250 300

I
II
III

Re

ϑ(o)

Figure 4.2: Layover angle ϑ of a neutrally buoyant cylinder, where m∗ = 1. Note that the

layover angles are close to 90o although there is a variation in their values.
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This evidently results from the symmetry about the x axis for the neutrally buoyant

(m∗ = 1) cylinder.

4.2.2 Amplitude of oscillation

Although steady in Regime I, the cylinder oscillates in Regime II and III. Figure 4.3

shows the Root-Mean-Square (RMS) value of the dimensionless y amplitude designated

as Ay
∗. The RMS value was used to indicate the size of oscillation as it is appropriate

both for sinusoidal and non-sinusoidal oscillations. In Regime II, the oscillation ampli-

tude becomes larger as Re increases, counter to the trend of decreasing layover angle

in this regime shown in figure 4.2. The case of Re = 40 was determined to be in this

regime by considering both the amplitude and frequency of the oscillation. In Regime

III, the amplitude jumps significantly up to about 0.2D, and is not purely sinusoidal,

contrary to that of Regime II. The time histories of the x and y positions show slowly

varying behaviour superimposed on shorter period sinusoidal oscillations. The details

of the time histories are shown later. This behaviour of the histories of x and y posi-

tions in Regime III for the neutrally buoyant case is different from that for the cylinder

when m∗ 6= 1.

0.0

0.1

0.2

0.3

  0  50 100 150 200 250 300

I
II
III

Re

A∗

y

Figure 4.3: Amplitude of oscillation in the y direction versus Reynolds number Re for a

neutrally buoyant cylinder.
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4.2.3 Frequency of oscillation

The oscillation frequency is presented in dimensionless form of St = fD/U∞ in fig-

ure 4.4, where f is the oscillation frequency, D is the cylinder diameter, and U∞ is

the incoming flow speed. St = 0 for Regime I as there is no oscillation. In Regime II,

the frequency increases as Re is increased. This increase in frequency is comparable

to that of vortex shedding for a fixed cylinder within the same Re range. The St of

the tethered cylinder at each Re is close to (but less than) that for a fixed cylinder.

Contrary to the case of Regime II, the oscillation frequency in Regime III is virtually

constant even though Re changes from 200 to 300. The saturated value is St = 0.178,

also less than the value of 0.2 for a fixed cylinder.

The nondimensionalised natural frequency f∗

n was calculated using equation 4.1

and is in the range of f∗

n = 0.0316 − 0.0352. It is clear that the cylinder oscillates at

a frequency higher than its natural frequency (f∗

n) but lower than the vortex shedding

frequency of a fixed cylinder (fvo).

f∗

n =
fnD

U
=

1

2π

√

2

π

√

C2
x + {(1 − m∗)α + Cy}2

(CA + m∗)L∗
(4.1)

In equation 4.1, U is the inflow velocity, m∗ is the mass ratio, L∗ is the nondimen-

sionalised tether length, α is the parameter defined in section 3.1 and CA is the added

0.00
0.02
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0.06
0.08
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0.12
0.14
0.16
0.18
0.20
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I
II
III

fixed_cyl

Re

St

Figure 4.4: Frequency of oscillation in the y direction versus Reynolds number Re for

a neutrally buoyant cylinder. The frequency for a fixed cylinder is the vortex shedding

frequency.
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mass coefficient (CA = 1.0 for cylinder) of an ideal flow. Derivation of equation 4.1 is

explained in detail for a sphere in section 5.2.3.

Figure 4.5 shows the results of spectral analysis of the y displacement. It is clear

that the secondary and tertiary frequencies appear at the higher Reynolds numbers

of Re = 100 and 150 within Regime II. These secondary frequencies are observable

in the histories of the y displacements and are given in section 4.2.7. In Regime III,

the subharmonic frequencies disappear and a range of low frequencies appears. This

indicates an irregular nature to the y displacement, and is a principal difference from

the response of non-neutrally buoyant cylinders.
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Figure 4.5: Power Spectra of the y oscillation. The unit of power is arbitrary. Subharmonic

frequencies appear in Regime II (Re = 100 and 150). In Regime III (Re = 200 and 250), a

range of low frequencies is observable below St < 0.2.

4.2.4 Trajectory and forcing of the oscillating cylinder

Figure 4.6 presents the trajectories of the cylinder for two oscillating regimes. Within

Regime II, the y amplitude grows as Re increases, as expected from figure 4.3. In

Regime III, the amplitude is greater than that of Regime II, but the growth rate of the

amplitude is not as evident as in Regime II when Re is increased. Due to the neutral

buoyancy and the resulting layover angle of ϑ ≈ 90o, the trajectory for both regimes

is virtually parallel to the y axis, and the trajectory keeps its symmetry about the y

axis within Regime II. However, the symmetry about the y axis is lost in Regime III
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because of the irregular nature of the displacement history.

Figure 4.7 shows the phase plots of Cy versus Cx. In general, the plots are in the

form of a figure-of-eight, but not exactly in symmetric form about the y axis. This

asymmetry is due to the fact that the layover angle ϑ is not exactly 90o for each Re

and that there is a minute restoring force where m∗ = 1.

Figures 4.8 and 4.9 show the trajectory and the phase plots of total forces in the

(r, θ) coordinate system, where r and θ represent the radial and circumferential com-

ponents respectively. Only the cases for higher Reynolds numbers of Re = 150 − 250

are presented because of their discernible patterns. As expected from the similar plots

in the xy coordinates, it is obvious from figure 4.8 that the oscillation amplitude (in

the ϕ direction) grows as Re increases in Regime II, and is saturated in Regime III.

Because the radial position of the cylinder is fixed at 10D, no variation appears in the

r displacement in figure 4.8. As the layover angle ϑ ≈ 90o, there is little difference in

the phase plots of the forces between the (r, θ) coordinates and the (x, y) coordinates

when m∗ = 1.
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Figure 4.6: Trajectories of the oscillating cylinder in the xy coordinates when m∗ = 1. The

abscissa is the x displacement and the ordinate is the y displacement. The displacements are

normalised by the cylinder diameter D. For Re = 200 and 250, magnified and autoscaled

inset are added to show their asymmetry.
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Figure 4.7: Phase plot of the total force coefficients in the xy coordinates when m∗ = 1.

The abscissa is Cx and the ordinate is Cy.
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Figure 4.8: Trajectories of the oscillating cylinder in the rθ coordinates when m∗ = 1. The

abscissa is the r displacement normalised by the cylinder diameter D and the ordinate is the

θ in radian.
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Figure 4.9: Phase plot of the total force coefficients in the rθ coordinates when m∗ = 1.

The abscissa is Cr and the ordinate is Cθ.
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4.2.5 Vortex structure around the oscillating cylinder

Figures 4.10 to 4.14 show spanwise vorticity at selected Reynolds numbers. The flow

of Re = 20, which is in Regime I, is steady, and the others are periodic.

Figure 4.10: Spanwise vorticities at Re = 20 (Regime I). Red denotes clockwise vorticity,

blue denotes counterclockwise vorticity. The flow is from left to right, and is steady.

All of the periodic flows are basically ‘2S’ wake modes, following the terminology

of Williamson & Roshko (1988). For this wake state, two single vortices are shed per

oscillation period. The spacing between the vortices gets narrower as Re increases from

50 to 150, but does not change much between 150 and 250. This is consistent with the

frequency response in figure 4.4 showing an increase of the y oscillation frequency. It is

also apparent that the vortex formation length at the rear of the cylinder decreases as

the oscillating frequency increases, and that the vortex concentrations at high shedding

frequency occupy a smaller region in the wake than at low shedding frequency.

For all the Reynolds numbers investigated, the streamwise vorticity is nearly sym-

metric about the x axis even though the displacements in Regime III show an additional

low frequency oscillation. Note that the vorticity is asymmetric in a strict sense as the

layover angle ϑ is not exactly zero. It is expected that the the principal frequency of

(a) 1/4T (b) 2/4T

(c) 3/4T (d) 4/4T

Figure 4.11: Spanwise vorticities when Re = 50 (Regime II) at each quarter cycle of the

cylinder oscillation starting from the top of the oscillation. Flow is from left to right.
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(a) 1/4T (b) 2/4T

(c) 3/4T (d) 4/4T

Figure 4.12: Spanwise vorticities when Re = 100 (Regime II). Descriptions are the same

as figure 4.11.

(a) 1/4T (b) 2/4T

(c) 3/4T (d) 4/4T

Figure 4.13: Spanwise vorticities when Re = 150 (Regime II). Descriptions are the same

as figure 4.11.

cylinder oscillation is due to the periodic nature of the vortex shedding.

(a) 1/4T (b) 2/4T

(c) 3/4T (d) 4/4T

Figure 4.14: Spanwise vorticities when Re = 250 (Regime III). Descriptions are the same

as figure 4.11.
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4.2.6 History and phase of the displacements and forces

In Regimes II and III, the pressure component of the force dominates the total force

in both the x and y directions. This is due to the fact that the cylinder is a bluff body

and the flow separates, leading to the pressure varying considerably and not recovering

at the rear of the cylinder. In Regime II, where a gradual change in the oscillation

amplitude and frequency is observed, there is a considerable difference in the phase

observed as Re increases. As the main oscillation occurs in the y (transverse) direction,

the history and phase in the y direction are presented first, followed by those in the x

direction.

Figure 4.15 shows the histories of the y displacement and the phases to the forces

when Re = 50 and 100 corresponding Regime II. The total force Fy in the y direction

is nondimensionalised according to the equation Cy = Fy/(
1
2ρfAU∞

2). The pressure

force FP and the viscous force FV are the two components of the total force, i.e.,

FPy +FV y = Fy = 1
2Cy. The last term only holds because of the non-dimensionalisation

used to set up the problem, i.e., A = ρf = U∞ = 1.

At Re = 50, the total force, pressure force, and the displacement exhibit sinusoidal

oscillations. However, the viscous force shows non-sinusoidal oscillation although it is

not very distinct. The total and pressure forces in y lead the y displacement by ϕ ≈
90o, thus they are out of phase. In contrast, the viscous force leads the y displacement

by ϕ ≈ 270o. The phase difference for the total force is different to that for the pressure

force alone although the pressure dominates the total force in magnitude. Comparing

the magnitude of the pressure and viscous forces (the thin dashed lines), it is clear that

the pressure force fluctuation is greater than that of the viscous force.

When the Reynolds number is increased to Re = 100, a secondary frequency appears

in the y displacement. This secondary frequency is also observable in the total force

and the pressure force, but not in the viscous force. The phase plots for the total,

pressure, and viscous forces are greatly different to those of the Re = 50 case due to

the appearance of the secondary frequency. Similar to the Re = 50 case, only the

viscous force leads the displacement by ϕ ≈ 270o, whereas the other forces lead the

displacement by ϕ ≈ 90o.

Figure 4.16 shows the histories and the phase when Re = 150 and 250. The case of

Re = 150 shares most of the features with the Re = 100 case, except the appearance of

the lower frequency oscillation resulting in a drift of the lines of the phase plots. Based
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Figure 4.15: History and phase of the force and the displacement in the y direction at Re

= 50 and 100. The thick solid line in the history is the displacement, and the thin dashed

line is the force. The inset is the phase where the ordinate is the force. The axes in the phase

plot are autoscaled to see the pattern more clearly.

on the results for Re = 100 and 150, the lower frequency oscillation is considered as a

precursor to the regime change. At Re = 250 (Regime III), the y oscillation amplitude

increases more than twice the amplitude for Re = 150, and also shows more irregularity.

A significant difference to Regime II (Re = 50, 100, and 150) is the viscous phase plot,

demonstrating the different nature of the oscillation between the two regimes.

It is of interest to analyse the history of the cylinder displacement and the phase in

the x direction, as the oscillation of a tethered cylinder is basically two-dimensional in

the xy plane, which is one of the main differences from the previous studies of VIV of

an elastically mounted cylinder.

Figure 4.17 shows that the x oscillation is not sinusoidal when Re = 50. Moreover,
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Figure 4.16: History and phase of the force and the displacement in the y direction at Re

= 150 and 250. Note that Re = 250 corresponds to Regime III. Descriptions for the figures

are the same as figure 4.15.

the total fluid force in the x direction as well as the dominating pressure force exhibit

two peaks a cycle, which indicates a secondary frequency. This is different to the y

oscillation, in which the oscillation is sinusoidal and the force fluctuation has a single

frequency. However, the secondary frequency is not apparent for the viscous force, with

the magnitude about 20% of the pressure force. Because of the secondary frequency,

the phase plots, except for the viscous force, portray a limit cycle in the form of a

figure of eight. The large peaks in the total, pressure and viscous forces lead the x

displacements by ϕ ≈ 270o.

At Re = 100, the x oscillation history is not sinusoidal as is the case at Re = 50;

a secondary frequency emerges in the x oscillation. The number of peaks per cycle in

the force histories is doubled that for Re = 50. The viscous force is about 20% of the
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Figure 4.17: History and phase of the force and the displacement in the x direction at Re

= 50 and 100. The thick solid line in the history is the displacement, and the thin dashed

line is the force. The inset is the phase where the ordinate is the force. The axes in the phase

plot are autoscaled to see the pattern more clearly.

pressure force, similar to the Re = 50 case, but exhibits a secondary frequency in its

history. Due to the appearance of secondary frequencies both in the oscillation and the

force fluctuation, the phase plot portrays a double figure-of-eight.

The phase pattern at Re = 150 depicted in figure 4.18 shows additional doubling

of the figure-of-eight with a drift of the lines due to slowing varying oscillations in the

history of the force and the displacement. Except for the doubling in the phase, the

principal phase value is consistent with the Re = 100 case for all the forces. Note that

the tether constrains especially the x motion because the trajectory is on a circular

arc. When Re is increased to 250, the magnitude of the fluctuating forces increases

considerably, but the oscillation amplitude varies little. There is no doubling of the
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phase pattern like the cases of Re = 100 and 150, and irregular oscillation is enhanced.

Re = 150 Re = 250

Displacement

&

Total

Force

-0.02
-0.01

0
0.01
0.02
0.03

250 260 270 280 290 300
-0.1

-0.05

0

0.05

0.1

0.15

350 360 370 380 390 400

Displacement

&

Pressure

Force

-0.02

-0.01

0

0.01

0.02

0.03

250 260 270 280 290 300

-0.05

0

0.05

0.1

350 360 370 380 390 400

Displacement

&

Viscous

Force

-0.004
-0.003
-0.002
-0.001

0
0.001
0.002
0.003
0.004
0.005

250 260 270 280 290 300

-0.01

-0.005

0

0.005

0.01

0.015

350 360 370 380 390 400

Figure 4.18: History and phase of the force and the displacement in the x direction at Re

= 150 and 250. Descriptions for the figures are the same as figure 4.17.

4.2.7 Power spectrum of the displacements and forces

Figures 4.19 and 4.20 show the spectra of the oscillation for x, y, Cx and Cy. Both

in the x and y oscillations, subharmonic frequencies appear at Re = 100 and 150 in

Regime II. In Regime III, represented by Re = 250, a range of low frequencies below

St < 0.2 appears, which is an indication of the irregular motion of the cylinder in y

within this regime.

Contrary to the spectra of the x and y oscillations, those for the Cx and Cy are

different. Only one frequency appears for the y force Cy. This demonstrates that there

are other forces having an effect on the y oscillation besides the fluctuating y force.

However, several subharmonic frequencies appear for Regime II. In Regime III, a range
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Figure 4.19: Power spectrum for the displacements and the total forces in x and y. The

unit of the power is arbitrary.

of low frequencies below St < 0.4 appears. Note that the principal frequency is twice

of that of the x displacement. The subharmonic frequencies of Cx and x explain the

shape of the phase plots presented in section 4.2.7.

Considering the principal frequency of Cy, it is clear that the Cy fluctuation is

the main cause of the x oscillation as well as of the y oscillation, and the secondary

frequencies of the Cx are the cause of the secondary motions in the x and y oscillation

histories. The effect of Cx on the y oscillation is due to the layover angle ϑ being ≈ 90o

when m∗ = 1.
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Figure 4.20: Power spectrum for the displacements and the total forces in x and y. The

unit of the power is arbitrary.

4.3 VIV of Non-Neutrally Buoyant Cylinders: m
∗ 6= 1

Previous studies of VIV of tethered bodies have focused on the case of m∗ 6= 1, where

the buoyancy plays an important role in the equations of the body motion. In this

section, the some simulation results for non-neutrally buoyant cylinders are provided

to investigate any similarities or dissimilarity to the neutrally buoyant case where the

buoyancy term in the equations of motion disappears. The simulations were performed

over the same range of Re = 20 − 300 for the neutrally buoyant (m∗ = 1) cylinder, with
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other conditions the same as those for the m∗ = 1 case. The range of m∗ covered was

m∗ = 0.1 − 1.11.

Of these investigated, the mass ratios considered to be close to the neutrally buoyant

case are m∗ = 1.11, 0.909 and 0.833, with the cases of m∗ = 1.11 and 0.833 chosen

to be presented as the m∗ = 0.909 case showed similar response to the m∗ = 0.833

case. Further deviation from neutral buoyancy is also investigated by choosing mass

ratio of m∗ = 0.5, 0.2 and 0.1, with the case of m∗ = 0.2 chosen to be highlighted

in the following discussions. The selection of these three mass ratios is based on the

similar results for the neighbouring mass ratios. By decreasing m∗, it is found that

the response of a buoyant tethered cylinder changes as the mass ratio passes through

m∗ = 0.5. Note that this study is limited to the case of a fixed tether length of 10D

and the range of Re = 10 − 300, as it is reported that the tether length and Re have

an effect on the response of the tethered body (Ryan et al. 2007). It is also found that

the tether length L ≥ 5D is regarded as long tethers, where the effect of neglecting the

rotational motion of the body is minimal (Ryan et al. 2004a, 2007).

Three response regimes are identified based on the layover angle and the amplitude

and frequency of oscillation for all the mass ratios considered. The Re range for each

regime is found to be the same as that for the neutrally buoyant cylinder. The re-

sponses of the cylinders with different mass ratios are presented together to highlight

any differences among them, as well as to identify any differences from the case of a

neutrally buoyant cylinder.

4.3.1 Layover angle

Not surprisingly, the layover angle, for all three regimes, becomes smaller as the mass

ratio decreases, as depicted in figure 4.21. The trend of the layover angle is dependent

on the mass ratio. The case of m∗ = 1.11 is a slightly heavier-than-fluid case compared

with the m∗ = 1 case. Other cases deviating from the m∗ = 1 case such as the lighter-

than-fluid m∗ = 0.909 case, are also considered. Notice that the change of m∗ by 10%

is a priori a very small change in terms of the buoyancy force. When m∗ = 1.11, the

layover angle gradually increases over all three regimes as the Reynolds number is

increased, and is greater than 90o as the cylinder is heavier than the displaced fluid.

Unlike the m∗ = 1 case, the layover angle increases within Regime I due to buoyancy.

In Regime II, the layover angle grows more slowly than in Regime I. When Re ≥ 200,

83



defined as Regime III, it grows faster than in Regime II.
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Figure 4.21: Effect of m∗ on layover angle.

When m∗ is between 0.909 and 0.5, the layover angle decreases as Re increases

in Regimes I and II, then increases or remains constant in Regime III. The rate of

decrease of the layover angle is greater in Regime I than in Regime II for these mass

ratios. However, when m∗ ≤ 0.2, the layover angle decreases rapidly in Regime I, then

increases gradually over Regimes II and III. The layover angle in Regime III shows little

difference at these mass ratios (m∗ = 0.2 and 0.1).

Due to the high buoyancy when m∗ = 0.2, the layover angle within Regime I changes

greatly. In Regime II, the layover angle does not decrease any more (m∗ = 0.2) or

slightly increases (m∗ = 0.1), which is different to the m∗ ≥ 0.667 cases. Additionally,

the layover angle increases considerably within Regime III, while it remains unchanged

for the mass ratios of m∗ = 1 to 0.667.

4.3.2 Amplitude of oscillation

The oscillation amplitude, in general, increases as the mass ratio decreases, and the

cylinder oscillates in Regimes II and III for all the mass ratios considered, as shown in

figure 4.22. The behaviour of the oscillation amplitude, however, within the regimes is

dependent on the mass ratio. When m∗ = 1.11, the amplitude changes little in Regime

II except at the beginning of the regime, then it grows gradually in Regime III.

When m∗ is between 0.909 and 0.5, two noticeable differences exist compared with
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Figure 4.22: Effect of m∗ on oscillation amplitude.
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Figure 4.23: Effect of m∗ on oscillation amplitude within Regime II. The dashed line

corresponds to the neutrally buoyant case. Contrary to other cases, it follows neither the

trend of lighter-than-fluid cylinder nor that of heavier-than-fluid one.

the m∗ = 1.11 case. The first is that the amplitude does not grow monotonically within

Regime II. It increases rapidly within the range of Re = 40 − 60, and slightly decreases

within Re = 70 − 120, then increases again for Re = 130 − 150. Secondly, the ampli-

tude grows faster than for the m∗ = 1.11 case within Regime III. Additionally, no jump

is observed between Re = 150 and 200.

When m∗ ≤ 0.2, continuous growth in amplitude is clear in Regime II as well as in

Regime III, contrary to the trend when m∗ = 0.5 − 0.909. As for the other mass ratio

cases, the cylinder oscillates from Re = 40 when m∗ = 0.2. There exists a principal

difference in Regime II compared to the less buoyant cases. The amplitude grows fast

and continuously throughout Regime II without any local decrease as was observed
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when m∗ = 0.833. However, the amplitude grows faster in Regime III than in Regime

II, similar to the m∗ = 0.833 case.

If we consider the amplitude response within Regime II, which is indicated by a

rectangular box in figure 4.22 and shown in figure 4.23, it is observed that the neutrally

buoyant cylinder follows neither the trend of a lighter-than-fluid cylinder nor that of

a heavier-than-fluid one. Together with the jump in the amplitude between Re = 150

and 200, this suggests that the response of a tethered cylinder with neutral buoyancy

is different in nature to that of the non-neutrally buoyant cylinder.

4.3.3 Frequency of oscillation

The oscillation frequency in y given in figure 4.24 shows little dependence on the mass

ratio. Particularly in Regime II, the frequency gradually increases as Re increases,

similar to the variation for a fixed cylinder (Williamson 1988a), but has a value lower

than that for a fixed cylinder at a given Re. The rate of increase reduces as Re

approaches 150. In Regime III, the frequency reaches a saturated value of about St

= 0.17 and remains unchanged. When m∗ ≥ 0.5, a small but obvious increase of the

frequency is observed.
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Figure 4.24: Effect of m∗ on oscillation frequency versus Reynolds number.
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4.3.4 Trajectory and forcing of the oscillating cylinder

In figure 4.25, the xy trajectories of the oscillating cylinder at different mass ratios are

shown. Firstly, it is found that, for all the mass ratios, an inclination of the trajectory

is apparent, due to the buoyancy. The inclination angle for m∗ = 1.11 is opposite to

the other two mass ratios, as it is a heavier-than-fluid case. For the other two lighter-

than-fluid cases of m∗ = 0.833 and 0.2, the inclination angle grows as the mass ratio

decreases. Secondly, the amplitude grows as Re increases, mainly in the y direction at

a given mass ratio. Of note is that the amplitude for m∗ = 0.2 is considerably greater

than for the other two mass ratios of m∗ = 1.11 and 0.833.

Figure 4.26 presents phase plots of the total force coefficients (Cx − Cy) in the x

and y directions. These forces are the cause of the oscillatory motion of the cylin-

der in the xy plane. When m∗ = 1.11, both force components grow in magnitude as

Re increases. The effect of buoyancy appears clearly at higher Reynolds numbers of

Re > 150, being characterised by asymmetry about zero of the ordinate. The minimum

value of the y force coefficient Cy is larger than the maximum value because of the neg-
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Figure 4.25: Trajectories of the oscillating cylinder at various mass ratios in the xy coor-

dinate. Flow is from left to right. The abscissa is x∗ and the ordinate is y∗, where the ∗
denotes the dimensionless value.
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Figure 4.26: Phase of the total forces in x and y, Cx − Cy, at various mass ratios. The

abscissa is Cx and the ordinate is Cy.

ative buoyancy when m∗ < 1, but the phase plot still shows a figure-of-eight pattern.

When m∗ = 0.8333, the total forces in the x and y directions are different from those

for the m∗ = 1.11 case because of the positive buoyancy. Despite this, the phase of the

total forces still exhibits a figure-of-eight pattern for both mass ratios of m∗ = 1.11 and

0.833. Moreover, the phase pattern shows a single line of the figure-of-eight, indicating

no secondary oscillation of low frequencies.

When m∗ = 0.2, a remarkable difference from the other two mass ratios is found.

At the discrete Reynolds numbers considered, the phase plots of the force components

exhibit completely different patterns, as depicted in figure 4.26, and the magnitudes

of the forces are much larger than those of m∗ = 1.11 and 0.833. Combined with

the difference found in the layover angle and oscillation amplitude for the mass ratios

considered, it is found that the buoyant tethered cylinder shows a different response

when the mass ratio is raised above a critical value. More precisely, it is expected

that this critical mass ratio is located close to m∗ = 0.5, based on the mass ratios

considered with the tether length of 10D. The phase of the force when m∗ = 0.5

showed a transitional pattern and is presented in section 4.3.5. Another view of the
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phase between the forces Cr − Cθ between the rθ coordinate shows little difference to

the behaviour in terms of Cx − Cy. Thus, it appears sufficient to investigate the phasing

of the force components in the xy coordinate without considering the rθ counterparts.

4.3.5 History and phase of displacements and forces
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Figure 4.27: History and phase of the total force and the displacement in the y direction

at Re = 50 and 100. The thick solid line is the displacement, and the thin dashed line is the

force. The inset is the phase where the ordinate is the force. The axes in the phase plot are

autoscaled to see the pattern more clearly.

As the mass ratio varies, changes to the y displacement history and its phase re-

lationship to the different types of forces is observed. Figures 4.27 and 4.28 show the

histories of the displacement and their phase difference relative to the total force in the

y direction.

For all the mass ratios and Reynolds numbers considered, the y displacement ap-
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Figure 4.28: History and phase of the total force and the displacement in the y direction

at Re = 150 and 250. Descriptions for the figures are the same as figure 4.27.

pears sinusoidal, and the amplitude of oscillation grows as Re increases. For m∗ = 1.11

and 0.833, the total force is also sinusoidal and is out of phase with the y displacement

(ϕ ≈ 180o) resulting in the phase plots of a line or a flat oval as shown in the insets of

figures 4.27 and 4.28. When m∗ = 0.2, however, the total force is not sinusoidal, partic-

ularly at Re ≥ 100. In addition, the phase difference is ϕ ≈ 90o and exhibits a pattern

of a wide oval with increasing distortion around top-left and bottom-right corners. This

is another indication of the existence of a critical mass ratio mentioned previously.

Of interest is that the mean value of the total force in y is not zero. This is indicated

clearly by a slight distortion of the oval in the phase plots at Re = 250. As the pressure

force contributes about 80% to the total force, and shows history and phase patterns

similar to the total force, it is not presented here.

However, the viscous force, which contributes only about 20% to the total force,

90



m∗ Re = 50 Re = 100

1.11

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

250 260 270 280 290 300
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

250 260 270 280 290 300

0.833

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

250 260 270 280 290 300

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

250 260 270 280 290 300

0.2

-0.15

-0.1

-0.05

0

0.05

0.1

250 260 270 280 290 300

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

250 260 270 280 290 300

Figure 4.29: History and phase of the viscous force and the displacement in the y direction

at Re = 50 and 100. Descriptions for the figures are the same as figure 4.27.

leads the y displacement by ϕ ≈ 270o for all the mass ratios and Reynolds numbers

considered. As a result, the phase plot has a pattern in the form of a wide oval with

different inclination angle. This is depicted in figures 4.29 and 4.30. In contrast to the

pressure and total forces, the magnitude of the viscous force remains almost unchanged

as Re increases. The phase plot for Re = 250 and m∗ = 1.11 showing a wider oval

with a flat part in its top-right corner is due to the negative buoyancy for the heavier-

than-fluid cylinder. An obvious pattern change to a hook shape around its top-right

corner appears when m∗ = 0.2, particularly at Re ≥ 100. This is due to a non-sinusoidal

oscillation of the force as presented in figures 4.29 and 4.30.

The effect of changing the mass ratio on the VIV of tethered cylinders emerges

clearly when we look into the motion and the forces in the x direction. This is mainly

due to the appearance of the buoyancy (or gravity) in the equations of motion, which
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Figure 4.30: History and phase of the viscous force and the displacement in the y direction

at Re = 150 and 250. Descriptions for the figures are the same as figure 4.27.

in turn changes the layover angle of the cylinder, which also depends on the flow speed.

As the layover angle ϑ departs from 90o, the amplitude of oscillation in the x direction

is allowed to grow.

As is the case for the y displacement, the x displacement is sinusoidal for all mass

ratios and Reynolds numbers investigated. However, a great difference is found as the

mass ratio and Re vary. At a given Re, small peaks on the history of the x total force

(Cx) get bigger as m∗ is increased to 1.11. This results in a distorted oval with a narrow

tip at its top right corner or a figure-of-eight pattern in the phase plots when m∗ = 1.11

and 0.833 at Re ≥ 150 (see figures 4.31 and 4.32). Once again, the phase for m∗ = 0.2

shows a difference to that for the other two mass ratios. An additional change at the

top of the cycle of the Cx history appears at m∗ = 0.2 and results in the pattern shown

in figures 4.31 and 4.32. This is clearly shown at Re = 250. Even though the pattern

92



m∗ Re = 50 Re = 100

1.11

-0.005

0

0.005

0.01

250 260 270 280 290 300
-0.015

-0.01
-0.005

0
0.005

0.01
0.015

0.02
0.025

250 260 270 280 290 300

0.833

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

0.025

250 260 270 280 290 300
-0.02

-0.01

0

0.01

0.02

0.03

0.04

250 260 270 280 290 300

0.2

-0.1
-0.05

0
0.05
0.1

0.15
0.2

250 260 270 280 290 300
-0.2

-0.1

0

0.1

0.2

0.3

0.4

250 260 270 280 290 300

Figure 4.31: History and phase of the total force and the displacement in the x direction

at Re = 50 and 100. The thick solid line in the history is the displacement, and the thin

dashed line is the force. The inset is the phase where the ordinate is the force. The axes in

the phase plot are autoscaled to see the pattern more clearly.

is different, the phase difference for all the mass ratios has a similar value of ϕ ≈ 270.

Irrespective of the differences found between m∗ = 1.11, 0.833 and 0.2, there is a

fundamental difference of the behaviour of the neutrally buoyant cylinder to that of the

non-neutrally buoyant cylinder, which is highlighted by the power spectra, histories, and

phase plots of the displacements and forces. The neutrally buoyant tethered cylinder

exhibits low frequency motions in the history of the displacement and force when Re

increases beyond 100, whereas the non-neutrally cylinder does not, even at high Re

corresponding to Regime III. More detailed comparisons between the neutrally buoyant

and others are discussed in section 4.3.6. Interestingly, the simulation results for a

vertically tethered heavier cylinder have shown that its response behaviour is very
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similar to that of the neutrally buoyant cylinder.
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Figure 4.32: History and phase of the total force and the displacement in the x direction

at Re = 150 and 250. Descriptions for the figures are the same as figure 4.31.

4.3.6 Comparison to VIV of the neutrally buoyant tethered cylinder

As there is little difference in the xy trajectory with varying mass ratios, the phase

between the force and the displacement is used to compare the response of the tethered

cylinders with various mass ratios.

Figure 4.33 shows magnified and autoscaled phase plots in the x direction, i.e.

x − Cx. For each Re, only the neutrally buoyant cylinder (m∗ = 1) exhibits a different

pattern. Considering the smooth variation of the pattern at a given Re for other mass

ratios, it is clear that the response of the neutrally buoyant cylinder is quite different

to that of the other tethered cylinders of m∗ 6= 1. This is also clear in the phase plot in

the y direction as depicted in figure 4.34. As is the case for the phase in x, the neutrally
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buoyant cylinder exhibits a different shape to those for other mass ratios.

There are two main differences in the phase between the neutrally buoyant cylinder

and the non-neutrally buoyant ones. The first is that the neutrally buoyant cylinder

shows a non-periodic response at Re ≥ 150. In contrast, non-neutrally buoyant cylin-

ders, where the buoyancy is acting parallel to the y direction, show periodic oscillations

even at Re = 250. This is due to the magnitude of the restoring force. In general, the

drag (the x force) is primarily restoring force in both cases. For the neutrally buoy-

ant one, however, the restoring force is very small as there is no contribution of the

buoyancy to the restoring force as shown in figure 4.35. Thus, the neutrally buoyant

cylinder is more sensitive to small disturbances than the non-neutrally buoyant tethered

cylinder, where the buoyancy significantly contributes to the restoring force.

The second difference is the doubling of the figure-of-eight pattern in the x − Cx

phase plot for Regime II (see figure 4.33). The figure-of-eight pattern also appears when

m∗ 6= 1 at Re > 100, but the doubling of the patterns does not happen in those cases as

it does for the neutrally buoyant case. This doubling of the pattern is closely related to

the contribution of the buoyancy to the restoring force as depicted in figure 4.35. For

the neutrally buoyant cylinder, where the buoyancy or lift is zero and ϑ ≈ 90o, the drag

(the x force) acts pretty much at right angle to the allowed motion (see figure 4.35(a)).

However, when m∗ 6= 1, the layover angle ϑ 6= 90o and some component of the drag is

m∗ Re = 50 Re = 100 Re = 150 Re = 250

1.11

1

0.909

0.833

Figure 4.33: Phase between the displacement and the force in x. The abscissa is x and the

ordinate is Cx. The axes are autoscaled to show the pattern more clearly.
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m∗ Re = 50 Re = 100 Re = 150 Re = 250

1.11

1

0.909

0.833

Figure 4.34: Phase between the displacement and the force in y. The abscissa is y and the

ordinate is Cy. The axes are autoscaled to show the pattern more clearly.

δ

Lift = 0

Drag

(a) m∗ = 1

θ + δ Lift

Drag

Restoring
Force

(b) m∗ 6= 1

Figure 4.35: Restoring force for the neutrally buoyant (m∗ = 1 tethered cylinder (a) and

the non-neutrally buoyant m∗ 6= 1 cylinder. Lift is equivalent to buoyancy. The oscillation

angle δ varies in time and δ ≪ 1. The time-mean of the tether angle for the non-neutrally

buoyant cylinder is denoted as θ in (b). The mean tether angle is omitted in (a) as θ ≈ 0o

when m∗ = 1.

allowed to act to restore the mean position (see figure 4.35(b)). Because of this, the

fluctuation of the drag has a larger effect on the y oscillation than for the case of ϑ 6= 90o

although the fluctuating x force is not the largest effect on the y oscillation. This is

verified in the previous spectral analysis for the neutrally buoyant cylinder showing

the matching of the subharmonic frequency of Cx to the secondary frequency of the y

oscillation.
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4.4 VIV of a Vertically Tethered Cylinder

Based on the findings of the different response of the neutrally buoyant cylinder to

the non-neutrally buoyant one, a question that arises is what makes the difference in

the results for that relatively narrow range of the mass ratio of m∗ = 0.833 − 1.11. It

appears that the direction of the buoyancy (or gravity) force acting on the cylinder can

make a difference. As for the tethered sphere case, which will be discussed in chapter 5,

the idea of performing simulations for a vertically tethered cylinder originated from the

work of (Provansal et al. 2004), who experimentally found a different oscillation mode

for a vertically tethered sphere.

It is not hard to find a similarity between the neutrally buoyant and the vertically

tethered non-neutrally buoyant cylinders in terms of the force balance. A schematic of

the vertically tethered cylinder is shown in figure 4.36. Unlike the horizontal tethering

configuration used for the previous sections, the buoyancy acts parallel to the flow (in

the x direction) for the vertical tethering. This causes the layover angle to be close to

90o as is the case for the neutrally buoyant case. As the layover angle ϑ = 90o results

in the x force having an effect on the y oscillation, the vertically tethered cylinder will

exhibit a response different to that for the horizontally tethered cylinder, and possibly

a similar response to that for the neutrally buoyant one.

Simulations for a vertically tethered cylinder were performed by modifying the nu-

merical code adopted from the neutrally buoyant tethered cylinder with the horizontal

tethering configuration. The modification was performed on the equations of motion

δ << 1

y

x

Flow
Buoyancy Drag + Gravity

Lift

Figure 4.36: Schematic of a verticall tethered cylinder.
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of the cylinder. The tension, T , is described by

T = (Fx − B + W ) cos θ + Fy sin θ. (4.2)

The mass ratio is assumed to have the value of m∗ ≥ 1, but the cases of m∗ < 1 can be

solved easily by simply changing the signs of the buoyancy (B) and the cylinder weight

(W ).

Accordingly, the resulting equations of motion are:

mẍ = (Fx − B + W ) − T cos θ, (4.3)

mÿ = Fy − T sin θ. (4.4)

4.4.1 Response of the cylinder

Simulations for a vertically tethered cylinder with m∗ = 1.25 were carried out over the

range of Re = 10 − 300, as for the previous tethered cylinders. The α value describ-

ing the magnitude of the gravity was set to unity to be consistent with the neutrally

buoyant case. Note that, for this vertically tethered cylinder, the solutions diverged for

Re ≥ 200, where the history of the x and y oscillations showed irregularity. Some other

mass ratios of m∗ = 1.1, 2.0 and 4.0 were tested and showed the similar diverged solu-

tions when the oscillations became irregular. As the mass ratio increases, the Reynolds

number at which the irregular oscillation initially appears to decrease. Lowering the

timestep of the simulations had been tried and showed the same results for the three

mass ratios. Unfortunately, there has been no experimental results to which the cur-

rent simulation results to be compared. Thus, a comparison of the vertically tethered

cylinder to the neutrally buoyant cylinder is focused on Regime II, where the oscillation

is initiated and is periodic.

Figure 4.37 compares the mean layover angle for the vertically tethered cylinder and

that for the neutrally buoyant cylinder. The main difference is the Reynolds number at

which Regime II starts. Here, it is found to occur between Re = 40 and 50, whereas it

was between Re = 30 and 40 for the neutrally buoyant cylinder. This is also apparent

in the amplitude and frequency response shown in figures 4.38 and 4.39. The difference

is suspected to be due to the difference in the magnitude of the restoring force. For the

neutrally buoyant cylinder where the restoring force is very small, the cylinder reacts to

small fluctuations resident in surrounding fluid, whether they are regular or irregular.

Therefore, it is believed that this results in the early start of Regime II at Re = 40
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Figure 4.37: Layover angle ϑ of a vertically tethered cylinder (left) and of a neutrally

buoyant tethered cylinder (right). Note that ϑ s are close to 90o.

compared to the vertically tethered cylinder case. Besides this difference in the Re

range, both cylinders exhibit virtually identical responses in Regime II, as shown in

figures 4.37 to 4.39.

Figure 4.40 shows the xy trajectories for Re = 50, 100 and 150. The trajectories

for all the Reynolds numbers are perpendicular to the flow because ϑ ≈ 90o, and

their amplitude grows with increasing Re, as anticipated from the amplitude response

depicted in figure 4.38.

The forces responsible for the trajectory are presented in figure 4.41. As is the case

for the trajectory, the magnitude of the x and y forces grow as Re increases. If we look

at the insets, it is also clear that there is a doubling of the figure-of-eight pattern of the

phase between the two forces. This indicates that subharmonic frequencies exist in the

history of the two forces.
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Figure 4.38: Amplitude of oscillation in the y direction for a vertically tethered (left) and

a neutrally buoyant tethered (right) cylinder.
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Figure 4.39: Frequency of oscillation in the y direction for a vertically tethered (left) and

a neutrally buoyant tethered (right) cylinder.
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Figure 4.40: Trajectories of the oscillating cylinder in the xy coordinates when m∗ = 1.25.

Flow is coming from left. The abscissa is the x displacement and the ordinate is the y

displacement. The displacements are normalised by the cylinder diameter D.
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Figure 4.41: Phase plot of the total force coefficients in the xy coordinates when m∗ =

1.25. The abscissa is Cx and the ordinate is Cy. The inset is magnified and autoscaled.
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4.4.2 Comparison to VIV of the neutrally buoyant tethered cylinder

The results presented in section 4.4.1 indicate that the vertically tethered cylinder ex-

hibits a response similar to that of the neutrally buoyant one at least in terms of phase

plots of force coefficients. It is also possible to investigate other aspects of the response,

such as the power spectrum of the oscillation for the vertically tethered cylinder, and

compare these to the horizontally tethered cylinder case. To undertake this compar-

ison, the power spectra of the x, y, Cx and Cy, and the phase between displacement

and force in the x and y directions, are investigated for the following three cases: a

horizontally tethered cylinder; a neutrally buoyant tethered cylinder; and a vertically

tethered cylinder.

Figure 4.42 presents the power spectra of the displacements and the forces in the
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Figure 4.42: Power spectrum for the displacements and the total forces in x and y at Re

= 150. The unit of the power is arbitrary.
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x and y directions. Only the power spectra at Re = 150 are given because other

Reynolds numbers showed similar characteristics but less clearly. Note that the right

two columns correspond to the neutrally buoyant cylinder and the vertically tethered

cylinder, respectively. First of all, subharmonic frequencies are present in the y direction

as well as in the x direction for the neutrally buoyant and the vertically tethered

cylinder. However, this is not the case for the horizontally tethered cylinder, which

shows one frequency only in each direction.

Secondly, several discrete subharmonic frequencies appear in the power spectrum

of Cx for the neutrally buoyant and the vertically tethered cylinder, whereas the hor-

izontally buoyant tethered cylinder exhibits one additional superharmonic frequency.

Of interest is that the power at the subharmonic frequencies for the vertically tethered

cylinder is larger than those for the neutrally buoyant cylinder, due to larger restoring

force. It is also clear, for the neutrally buoyant cylinder and the vertically tethered one,

that the Cx affects the y oscillation as well as the x oscillation, based on the matching

of the subharmonic frequencies of Cx and y. In contrast, the fluctuating Cy is the only

force contributing to the x and y oscillations for the horizontally tethered cylinder.

The phase between the displacements and the forces depicted in figure 4.43 also

reveals the close resemblance of the behaviour of the neutrally buoyant cylinder and

the vertically tethered cylinder. Note that the bottom two rows correspond to the

neutrally buoyant cylinder and the vertically tethered cylinder, respectively. The phase

in the x direction for the two cases is characterised by a figure-of-eight pattern at Re =

Re = 50 Re = 100 Re = 150 Re = 50 Re = 100 Re = 150

Horizontal

Tethering

m∗ = 0.833

Neutral

Buoyancy

m∗ = 1

Vertical

Tethering

m∗ = 1.25

x − Cx y − Cy

Figure 4.43: Phase plot between displacement and force. The abscissa is the displacement

and the ordinate is the force. The axes are autoscaled to show the pattern more clearly.
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50 and its doubling at higher Reynolds numbers of Re = 100 and 150; this behaviour

is different to that of the horizontally tethered cylinder case. The difference of the

horizontally tethered cylinder to the other two cases is clearly shown in the y phase,

particularly at Re = 100 and 150. A doubling of the phase pattern is also observable

in the y phase as is the case in the x phase. It is of note that the doubling of the

phase pattern is closely related to the subharmonic frequencies appearing in the power

spectra for the displacements and the forces.

4.5 Chapter Conclusions

Numerical simulations of VIV for a neutrally buoyant tethered cylinder have shown

that there exist three flow regimes within the range of Reynolds number Re = 10 − 300:

Regime I, II and III. The layover angle ϑ, oscillation amplitude and frequency are used

to define the regimes.

Regime I covers 10 ≤ Re < 40, and is steady with ϑ = 90o. Regime II exists between

40 ≤ Re < 200, and shows unsteady and periodic oscillation with growing amplitude

and frequency as Re increases whereas ϑ decreases with increasing Re. Regime III,

starting at Re = 200, exhibits much larger amplitude than that of Regime II, with

slowly varying components on its principal oscillation. The frequency of this regime

is saturated at St ≈ 0.17, which is lower than that for a fixed cylinder reported in

Williamson (1988a). The history and phase of the displacements and forces in the x

and y directions, together with the power spectra of those, reveal that the principal

oscillation in both displacements is dominated by a fluctuating y force, Cy, with sec-

ondary oscillations affected by subharmonic frequencies of the x force , Cx, particularly

in Regime II. It is found that this subharmonic oscillation in the displacements is due to

the layover angle being close to 90o and presumably dictated by restricting the motion

to a circular arc.

Simulations of VIV for tethered cylinders where the buoyancy is acting in the y

(crossflow) direction have been carried out to find any similarities or dissimilarities

from the neutrally buoyant case, when m∗ = 1. These are performed by varying the

mass ratio from m∗ = 1, covering the range 0.1 ≤ m∗ ≤ 1.11. Similar to the neutrally

buoyant case, three response regimes are found for all the mass ratios considered, and

each regime has the same Re range as from the neutrally buoyant case. The frequency

of oscillation shows little difference from the neutrally buoyant cylinder for all three
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regimes.

However, remarkable differences are also found to exist, particularly in the two

oscillating regimes: Regime II and III. Due to buoyancy, the layover angle is no longer

close to 90o even for the steady Regime I, and decreases continuously across Regime I

and II for the mass ratios up to 0.5. Unlike the neutrally buoyant case, the oscillation

amplitude grows smoothly across Regime II and III and maintains periodicity in Regime

III. Moreover, there is no subharmonic oscillation in the displacement signal for Regime

II. It is found that the difference in response from the neutrally buoyant case stems

from the buoyancy changing the layover angle considerably. Additionally, it is found

that there is a critical mass ratio beyond which the response and phase of the forces and

displacements change. From the mass ratios considered for the tether length of 10D,

the critical mass ratio exists within 0.5 ≤ m∗ ≤ 0.667. The dependence of behaviour

on mass ratio has been reported in previous studies of transversely oscillating cylinder

(Govardhan & Williamson 2003) and (Ryan et al. 2005) where there is a distinct change

in behaviour as the mass ratio is lowered below a critical mass ratio.

VIV of a vertically tethered cylinder where the buoyancy is acting parallel to the

flow is also investigated to identify the resemblance to the neutrally buoyant sphere.

The vertically tethered cylinder has the same force balance as the neutrally buoyant

cylinder except for the difference of magnitude of the restoring force in the x (parallel)

direction, and this was expected to reveal a close link to the neutrally buoyant cylinder.

Indeed, the same response, phase and power spectrum are observed for the vertically

tethered and neutrally buoyant cylinders featuring the doubling of a figure-of-eight in

the phase plots as the Reynolds number is increased. Perhaps of interest if that the

period-doubling of the phase plots seen as the Reynolds number is increased is consistent

with one of the classical paths to chaos. This could be a topic of further investigation.

Due to relatively larger effective drag force of the vertically tethered cylinder, Regime

II starts at a higher Re than the neutrally buoyant case, and the cylinder oscillates

periodically at the end of Regime II, whereas the cylinder with neutral buoyancy shows

less periodic oscillation with a slowly varying low frequency component.
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Chapter 5

VIV of a Tethered Sphere

5.1 Introduction

This chapter provides the details of the numerical and experimental results for a teth-

ered sphere with an emphasis on a neutrally buoyant sphere (m∗ = 1). The results for

VIV of a neutrally buoyant tethered sphere are given first. Next, numerical result for

a buoyant tethered sphere is presented to highlight any differences from the neutrally

buoyant case. In addition, for a buoyant tethered sphere, the effect of the Reynolds

number is investigated and the result fill a gap in literature for this type of VIV. Fi-

nally, the numerical results for a vertically-tethered sphere are presented, which shows

its similarity to the neutrally buoyant case.

5.2 VIV of a Neutrally Buoyant Sphere: m∗ = 1

This study reveals that the tethered sphere experiences seven different flow regimes as

Re increases. The first six regimes were determined by numerical simulations and the

seventh regime was found through experiments at high Reynolds numbers. A schematic

of the neutrally buoyant tethered sphere is shown in figure 5.1.

Using the spectral-element/Fourier-spectral code, the simulations have been per-

formed on high performance computers, and have been run using a parallel version

of the software to reduce the calculation time, for the range of Re = 50 − 800. Some

simulations have been run over 5000 non-dimensional time units to reach converged so-

lutions. For example, the calculation at Re = 400 was run up to 5000 non-dimensional

time units, which took about 30 hours. The initial Reynolds numbers were chosen in

the range of Re = 50 − 800 in steps of 50, and intermediate Reynolds numbers between

any two neighbouring Reynolds numbers were selected if any difference in body dynam-
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Figure 5.1: Schematic of a neutrally buoyant tethered sphere.

ics was observed. Re = 205, 210, 270, 280 and 330 are some examples chosen by this

process. The tether length was chosen to 10D for all cases.

Experiments were carried out to support the numerical findings and to expand the

Re range beyond the limit of the numerical simulations. The experiments covered the

range of Re = 700 − 8000, which is higher than that of the numerical study. Impor-

tantly, this Re range overlaps the Re range of the experiments as well.

A parameter R is defined as a position vector in the crossflow (yz) plane (refer

figure 3.2). Its magnitude is the distance to the centre of the body from the tether

pivot in the crossflow plane. The parameter R is more applicable than y or z for a

neutrally buoyant tethered sphere because there is no preferred direction of oscillation

in the crossflow plane. for each simulation, the time history of R was used to calculate

the time-mean position of the body, its amplitude and frequency, and the regimes were

determined based on these three response variables.

5.2.1 Time-mean position: Layover angle ϑ

The angle measured from the transverse axis to the centre of the body is used to

represent the time-mean position of the body. This angle ϑ, which is known as the

layover angle, has been used in the previous studies of VIV of tethered bodies. The

layover angle for the range of Re = 50 − 800 is shown in figure 5.2.

In the first regime (Regime I), the sphere remains on the pivot axis without move-
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Figure 5.2: Layover angle of a neutrally buoyant sphere

ment. Its Reynolds number range is Re < 200. The second regime (Regime II), start-

ing at Re = 210, is also steady but the axisymmetry is lost. This corresponds to the

two-threaded wake of the stationary sphere observed by Johnson & Patel (1999) and

Magarvey & Bishop (1961b). Thus, the sphere offsets from the symmetry axis and

the layover angle decreases as Re increases. This regime exists up to Re = 250. As

Re is increased further, the sphere starts to vibrate at Re = 270, the start of Regime

III. Regime IV begins at Re = 300. It shows a steep increase of the layover angle

indicating the body offsets more from the pivot axis than other regimes. In Regime V

(Re = 335 − 500), the layover angle comes back to 90o which means the body oscillates

around the pivot axis.

5.2.2 Amplitude of oscillation

Figure 5.3 shows the maximum amplitude of the sphere oscillations. The body shows

oscillation from Regime III starting at Re = 270. The simulations at neighbouring

Reynolds numbers of Re = 265, 268, 272 and 275 were performed and indeed the body

oscillation was observed from Re = 270. Regime IV begins at Re = 300. It shows sup-

pressed body oscillation and a steep decrease of the layover angle (see figure 5.2). The

amplitude of oscillation in Regime V gradually increases as Re is increased. In Regime

VI, the vibrations become chaotic and the sphere undertakes chaotic wandering, having

no restoring forces. Note that the oscillation amplitude of this regime in figure 5.3 is
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represented using the width and height of the wandering area due to its non-periodic

nature.
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Figure 5.3: Amplitude of oscillation using R for a neutrally buoyant sphere.

5.2.3 Frequency of oscillation

In Regime I and II, the sphere does not vibrate. Then, in Regime III, IV and V, it

undergoes periodic oscillations. In Regime VI, the oscillations lose their periodicity. The

frequency of the sphere oscillation is normalised and expressed by a Strouhal number

(St) based on the oscillation frequency (f) in radial direction, the freestream velocity

(U), and the sphere diameter (D). Using equation 5.1, the nondimensionalised natural

frequency f∗

n with the sphere diameter, D, and the inflow velocity, U , was calculated

and is in the range of f∗

n = 0.0254 − 0.0296.

f∗

n =
fnD

U
=

1

2π

√

3

4

√

C2
x + {(1 − m∗)α + Cy}2 + C2

z

(CA + m∗)L∗
(5.1)

In equation 5.1, m∗ is the mass ratio, L∗ is the nondimensionalised tether length, α is

the parameter defined in section 3.2 and CA is the added mass coefficient (CA = 0.5 for

sphere) of an ideal flow.

108



Derivation of equation 5.1 starts from the equations 5.2 to 5.4.

(m + ma)ẍ +
T

L
x = Fx, (5.2)

(m + ma)ÿ +
T

L
y = Fy + B − W, (5.3)

(m + ma)z̈ +
T

L
z = Fz. (5.4)

From these equations, it is obvious that the natural frequency is the same in all three

dimensions, and is given by

fn =
1

2π

√

T

(m + ma)L
. (5.5)

This dimensional natural frequency can be put in non-dimensional form, which is given

by

f∗

n =
fnD

U
=

1

2π

√

D2

U2

T

(m + ma)L
. (5.6)

Substituting the expression for the tension in the tether, collecting terms and using the

non-dimensional form of the fluid forces results in equation 5.1.

Williamson & Govardhan (1997) used equation 5.7 to calculate f∗

n by assuming the

y force, Cy, and the z force, Cz are much smaller than the buoyancy, (1 − m∗)α.

f∗

n =
fnD

U
≈ 1

2π

√

3

4

√

C2
x + {(1 − m∗)α}2

(CA + m∗)L∗
(5.7)

Figure 5.4 shows that St for Regime III is 0.0671 and is more than two times the

calculated f∗

n of the tethered sphere with m∗ = 1. In this regime, the Strouhal numbers

of oscillations in the x, y, z directions have the St value of 0.0671, as for the frequency

of R. The fluid forces in all three directions were calculated and also showed the same

value of St = 0.0671.

The frequency for R in Regime IV is St = 0.222, being much higher than its natural

frequency of fn ≈ 0.029. Note that within this regime, the body predominantly oscil-

lates in the azimuthal direction and the R amplitude is very small (see figure 5.3). The

St for this azimuthal oscillation has the value of 0.111, which is the same as that for the

oscillation for y and Fy. Only the displacement and force in y direction is mentioned

because there is little oscillation in the x and y directions, in contrast to the case of

Regime III. The value of St = 0.111 is close to that of the stationary sphere (St =

0.134) in the same Re range.
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Figure 5.4: Frequency of oscillation using R for a neutrally buoyant sphere.

The frequency of R for Regime V is 0.104. In Regime V, St is recalculated con-

sidering the mean-position on the pivot axis and its definition as a vector. The St for

Regime V (St = 0.104) is also close to (but still less than) that of the fixed sphere (St

= 0.134). Similar to the case of Regime IV, the body predominantly oscillates in the

y direction. The frequencies of y and Fy also have the same value of St = 0.104 as for

the R. Regime VI shows chaotic wandering of the body and the Strouhal number is

not meaningful. Hence, the area for this regime is shaded.

It is of interest that the critical Reynolds number separating Regimes II and III is

slightly lower than that of a fixed sphere (Re ≈ 280) found in Tomboulides & Orszag

(2000). Other calculations (i.e. Thompson et al. (2001) indicate the transition occurs

at Re ≈ 272. This is also the case for the transition to Regime II: the critical value

of the Reynolds number is Re ≈ 205 for the tethered sphere, whereas that for a fixed

sphere is Re = 211 (Johnson & Patel 1999).

5.2.4 Trajectory of the oscillating sphere

Regime III to VI

The trajectories in xy, yz, and zx planes are shown in figure 5.5. Note that all the

trajectories shown correspond to unsteady regimes, i.e., the regimes III to VI, and all

determined from the simulations. The trajectories of the other steady regimes are not

shown here as the sphere exhibits no oscillation.
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Figure 5.5: Trajectories in xy (first column), yz (second column), and zx (third column)

planes at various Reynolds numbers. All the axes have the same scale. Each tic represents

0.2D, and the mean position of the sphere is located to the (0, 0).
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Throughout the regimes III to V, the sphere oscillates on a straight line mainly in

the y direction. This is in contrast with the previous studies (Govardhan & Williamson

1997; Williamson & Govardhan 1997) showing that a buoyant tethered sphere exhibits

an oscillation, mainly in the z direction. This difference is due to the direction of the

buoyancy acting on the body (−y for a buoyant body) as well as its relative magnitude

as a restoring force. For the case of a neutrally buoyant body, the tethered sphere has

no preferred direction of the oscillation, considering its neutral buoyancy. However,

for the current simulations, the initial condition of φ = 0 and θ = 5 means an initial

displacement of the sphere only in the y direction, and affects the direction of the

oscillation. Note that this is only a matter of orientation of the oscillation, not a

matter of accuracy of the simulation results.

As the Reynolds number increases, the total amplitude grows gradually in the y

direction for the regimes III to V. In the regimes III and IV, the sphere does not

oscillate on a straight line parallel to axis. This is due to the fact that the sphere is

oscillating at a mean position away from the layover angle of ϑ = 90o and the fixed-

length tether. In contrast, the sphere oscillation trajectories are on a straight line

parallel to the axis when the layover angle is ϑ ≈= 90o.

The oscillations in the z direction appear at Re = 500 (the last Re considered for

Regime V) and gets larger at Re = 600 with chaotic wandering in the crossflow (yz)

plane. The case of Re = 500 was determined to be Regime V due to its periodic

oscillation, despite having a z oscillation.

The trajectory in yz is of interest not only because the main oscillation of the sphere

is observable in that plane but also because the difference between the regimes is clear,

for example the inception of the z oscillation. In section 5.2.6, the phase between the

forces and the displacement will be provided, focusing on this yz plane for the same

reason.

Regime VII

The trajectory in the xy and the yz planes at various Reynolds numbers were recorded

and were processed to calculate the position of the tethered sphere. The experimental

findings are twofold. Firstly, the existence of Regime VI found from the numerical

investigations is verified. In figure 5.6, the sphere shows a chaotic wandering as was

observed in the simulations at Re ≥ 600. The experimental results clearly show chaotic

112



wandering when Re < 3000 with its minimum value of 902. It should be noted that

the trajectories in the figure 5.7 are realigned for comparison, as the orientation of the

motion is arbitrary for the neutrally buoyant sphere.

2 4 6 8 10

Re

Regime

VIVIVIVI VIIVIIVIIVII

1792 7930902 2682 3630 4930 5730 62601

-1

0

0

Figure 5.6: Trajectories in yz plane. All the results are from the experiments. Both axes

are of the same scale and normalised by the sphere diameter D. Note the horizontal axis is

the z axis, and the vertical one is the y axis whereas the horizontal axis of yz trajectories in

figure 5.5 is the y.

2 4 6 8 10

Re

Regime

III IV V VIVIVI VIIVII

270 320 400 550 800 1792 5730 79301

-1

0

0

Figure 5.7: Trajectories in yz plane for unsteady regimes. The blue lines (Re = 270 to

800) are the numerical results. Both axes are of the same scale and normalised by the sphere

diameter D. Note the horizontal axis is the z axis, and the vertical one is the y axis whereas

the horizontal axis of yz trajectories in figure 5.5 is the y.

Secondly, an additional regime, Regime VII, is found to exist from the experimental

study at Re > 3000. This regime is characterised by a quasi-circular motion in the

yz plane, and is observed from Re = 3630. As Re is raised further, the sphere motion

exhibits more clearly a circular shape. Note that the square-like trajectories for Re =

5730 and 6260 are due to the lack of camera speed. The speed of camera was 8 fps up to

the Re = 6260, and was not suitable to show the full circular shape at those Reynolds

numbers. With the aid of a 25 fps video images, the quasi-circular motion shown for a

higher Reynolds number of 7930 is much more obvious.

To compare the trajectories and amplitudes of oscillation for each regime, the tra-
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jectories in the yz plane of the unsteady regimes are shown in figure 5.7. The variation

of the oscillation amplitudes shown in figure 5.3 can be observed in figure 5.7. It indi-

cates that the pattern of the sphere oscillation of the unsteady regimes III to V is close

to being a straight line. The sphere shows an irregular pattern in Regime VI, and a

quasi-circular motion in Regime VII.

The response variables of the sphere oscillation in Regime VII are given in table 5.1.

The diameter of the circle (calculated as Dcircle = Dy/2+Dz/2) gradually grows as Re

increases, and reaches about 0.5D at the maximum Re = 11870.

The nondimensionalised natural frequency, f∗

n, calculated using equation 5.1, is in

the range of f∗

n = 0.0145 − 0.0214 for the Re range investigated. Only an estimate of f∗

n

was possible due to the lack of force data from the experiments of an oscillating sphere.

It is obvious that the sphere oscillates at a frequency higher than its natural frequency

in Regime VII. A similar frequency response has been reported in the study of VIV of a

transversely oscillating cylinder, that, when m∗ ≤ 1, or of the order unity, the cylinder

oscillates at much higher frequency than its natural frequency. This frequency, however,

is lower than that of the other regimes.

Interestingly, the quasi-circular motion of sphere was reported for the vertically

tethered heavy sphere (Provansal et al. 2004). They observed a quasi-circular or an

elliptic motion in the plane normal to the flow at the Re range of Re = 600 − 800. This

contrasts to the sphere response of Regime VII as this motion appeared at much higher

Re > 3000. Numerical simulations were performed to identify this similarity between

Re D∗

circle f∗

y f∗

z

3630 0.22 0.0293 0.0293
4930 0.28 0.0335 0.0335
5730 0.31 0.0352 0.0352
6260 0.29 0.0360 0.0360
6432 0.28 0.0310 0.0310
7418 0.33 0.0347 0.0347
7930 0.34 0.0397 0.0397
11870 0.48 0.0454 0.0454

Table 5.1: The diameter of the quasi-circular area and the frequency of oscillation in Regime
VII. D∗

circle = Dcircle/D, and f∗ = fD/U . Note that the sphere oscillates at a frequency
higher than the estimated range of f∗

n = 0.0145− 0.0214. This is the case for the VIV of a
cylinder where m∗ ≤ 1.
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the two systems and to investigate the mechanism that induce the quasi-circular motion.

The results are detailed in section 5.5.

5.2.5 Vortex structure around the sphere

The vortex structures of the different regimes are shown in figure 5.8 to 5.13. The

structures are rendered by isosurfaces of streamwise vorticity (Regime II) and by the

field defined in Jeong & Hussain (1995) used to highlight vortical structures in the flow

(Regime III to VI). Figure 5.8 shows the vorticity plot of Regime II represented by

Re = 210 . The vorticity plot for Regime I is not presented because the vorticity is

virtually zero owing to the steady and axisymmetric flow with a layover angle of ϑ = 90.

In contrast, The flow for Regime II is steady but asymmetric for Regime II. Due to

this asymmetry of the flow field characterised by the double-threaded vortex loops, the

sphere is offset from its pivot axis in the crossflow plane.

Figure 5.8: Streamwise vorticity of Regime II (Re = 210). Flow is from the bottom left

corner to the top right. Red represents positive streamwise vorticity and blue represents

negative streamwise vorticity. The vorticity values are ±0.1, and the two trailing vortices are

apparent.

Regimes III, IV and V consist of periodic shedding of vortices as shown in figures 5.9

to 5.11. Within Regime III, the body oscillates mainly in the y direction. The stream-

wise vorticities of opposite signs do not interact much as they shed downstream, and

vorticity of each sign always takes one side of the body. As a result, the hairpin-shaped

vortex loops do not appear in this regime, as shown in the case of Re = 270 by the

field defined by (Jeong & Hussain 1995). Dissimilar vortex structures at the bottom

and top positions indicate a non-sinusoidal forcing in the y direction. This is verified

by comparing the histories of fluid forces, which are shown in section 5.2.6.

Within Regime IV, the body oscillates mainly in the azimuthal direction with a finite

mean inclination angle φ in the yz plane, whereas the body oscillates predominantly in
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(a) 1/4T

(b) 2/4T

(c) 3/4T

(d) 4/4T

Figure 5.9: Vortex structures at Re = 270: Regime III. It shows vortex structures for every

quarter oscillation period T from the lowest position of the cycle. The first column is the

streamwise vorticity, and the second column is the field defined by Jeong & Hussain (1995).

The colours for the streamwise vorticity are same as figure 5.8. Periodic shedding of vortices

is clear, but no hairpin-shaped vortex loops are shown.
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(a) 1/4T

(b) 2/4T

(c) 3/4T

(d) 4/4T

Figure 5.10: Vortex structure at Re = 330: Regime IV. The details of the plots are the

same as figure 5.9. The hairpin-shaped vortices appear.

the y direction. This azimuthal direction of oscillation seems due the vortex structure

adjacent to the body shown by the streamwise vortices in figure 5.10. On and around

the surface, the forming of the vorticity shows azimuthal variation within one cycle,

which is related to the body motion. However, in the far wake downstream, the hairpin
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(a) 1/4T

(b) 2/4T

(c) 3/4T

(d) 4/4T

Figure 5.11: Vortex structure at Re = 400: Regime V. The details of the plots are the same

as figure 5.9. The hairpin-shaped vortices is clear and keeps planar symmetry.

vortex loops are formed on both sides (±y in this case) from the shed vortices. The

two-sided vortex loops were observed for a spherical bubble rising in a fluid (Magarvey

& Bishop 1961b; Mougin & Magnaudet 2002), whereas the well-known one-sided vortex

loops were observed for a fixed sphere.
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In contrast, the body oscillates mainly in the radial direction in Regime V with

its mean position on the pivot axis, and the vortex structure reflects this difference

(figure 5.11). Firstly, the hairpin-shaped vortex loops are formed closer to the body in

the far wake region. Secondly, in the near wake, there is no variation of vortex forming

as was observed for Regime IV, where the vortices form only at the alternating sides

(±z) over a period in the near wake. The vortex forming period is longer than that

for Regime IV, but the vortex loops are formed on both sides (±y) as was the case for

Regime IV.

The motion of the sphere in Regime VI (Re = 700) shows irregular behaviour due

to the loss of regular shedding of vortices. In figure 5.12, the hairpin vortex loops are

visible although they are not as apparent as the cases for Regime IV and V. After the

flow becomes irregular, the difference in the vortex structure is difficult to discern.

A point of interest about the vortex structure is that the planar-symmetry is similar

to that for a fixed sphere. In figure 5.13, it is obvious that there is a symmetry plane

(a)

(b)

Figure 5.12: Vortex structure at Re = 700: Regime VI. (a) at t∗ = 510 and (b) at t∗ = 513

time units. The sphere motion has no periodicity. The details of the plots are the same as

figure 5.9. The hairpin-shaped vortices are visible, but lose their planar symmetry.
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for the vortex structure of Regime III and V. However, this planar-symmetry is lost in

Regime IV (Re = 330), where the body oscillated mainly in the azimuthal direction.

Re = 270 (Regime III)

Re = 330 (Regime IV)

Re = 400 (Regime V)

Figure 5.13: xy view of the vortex structure at the top position of the cycle in unsteady

regimes. It is clear that the structure is planar-symmetric at Re = 270 (Regime III) and 400

(Regime V). The planar-symmetry is lost when Re = 330 (Regime IV).

5.2.6 Phase between forces and displacements

In general, the fluid forces are the cause of a bluff body movement when the body is free

to move. In the problem of VIV, the phase between the fluid force and the displacement

is considered to give an explanation for its response, and hence its underlying mechanism

can be investigated by looking into these phase plots. Bearman (1984) pointed out the

importance of the phase for VIV problem together with other parameters such as the

mass ratio and structural damping. Many researchers, such as Blackburn & Henderson

(1999); Carberry et al. (2004), have interpreted the phase information as the energy

being transferred from the fluid flow to the body, and calculated the direction of this

energy transfer using the phase plots.

For a bluff body under forced vibrations, the energy transfer may be negative be-

cause the body can transfer energy to the fluid flow. However, the energy should be

positive for a freely vibrating bluff body or VIV as the body extracts energy from the

fluid flow to maintain the vibration. As a result, the phase for the VIV problems will

have limited values within the range of ϕ = 0 − 2π.

The phase information can be used to detect the change of the regimes in the VIV

problems. Bishop & Hassan (1964) was the first to mention this relationship. Govard-

han & Williamson (2005) found, for VIV of a transversely vibrating cylinder, the phase

between the vortex force and the displacement, and the total force and the displace-
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ment changes when the body goes through the three response branches; the initial, the

upper, and the lower branches. With this in mind, the phase is plotted and analysed for

unsteady regimes (Regime III to VI) of the tethered sphere found through numerical

simulations. For all three regimes, the total force, pressure force component, viscous

force component, and displacement are provided for all three Cartesian directions.

The motions in the x, y and z directions are coupled and not independent due to the

constant tether length (Lstar = 10). They are related to each other by equation 5.10,

and the sphere moves on a spherical surface defined by L∗, θ and φ. As L∗ is fixed

at L∗ = 10 for all the simulations considered, the motion is actually two-dimensional

in θ and φ. However, the following discussions are presented in the x, y and z for

convenience considering the initial conditions used in the simulations for the neutrally

buoyant sphere.

x = L cos θ (5.8)

y = L sin θ cos φ (5.9)

z = L sin θ sin φ. (5.10)

When m∗ = 1, there is no preferred direction in the yz plane as buoyancy is zero,

whereas the sphere oscillates in the z direction when m∗ 6= 1. For all the following

simulations when m∗ = 1, the initial conditions put a perturbation in the y direction,

thus, the results show the largest oscillation in the y direction. This is one of the reason

why the following results is discussed in the xyz coordinate. However, note that the

motion of a tethered sphere with a constant-length tether is basically two-dimensional,

and there is no preferred direction of oscillation in the crossflow (yz) plane when the

sphere is neutrally buoyant.

In Regime III (Re = 270), the total fluid force in the x direction as well as its

pressure and viscous components lead the x displacement by ϕ ≈ 270o as shown in the

time histories of the force and the displacement of figure 5.14. At this value of ϕ = 270o,

the phase plots are characterised by a circle. In the y direction, only the viscous force

component shows the phase value of ϕ = 270o. The total fluid force in the y direction

and its pressure component show a phase value of ϕ < 90o. If ϕ = 90o, the phase plot

will exhibit a straight line from the top left to the bottom right. It should be noted

that the body oscillates mainly in this direction. Although the magnitude of the force

and the displacement in the z direction are small, they exhibit the same characteristics
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Figure 5.14: History of the displacements (thick solid line) and the forces (thin dashed line)

forces at Re = 270 (Regime III).The abscissa of the history is the nondimensional time unit.

The insets of each subfigure are the phase plots between the displacement (abscissa) and the

force (ordinate). The axes in the phase plot are autoscaled to show the pattern more clearly.

as in the y direction, i.e., ϕFV −z ≈ 180o, ϕFP−z ≈ 90o, and ϕFtotal−z ≈ 90o.

The histories of the forces and the displacement, and the phase plots for Regime

IV (Re = 330) are provided in figure 5.15. In the x direction, the total fluid force

and all its components have the phase value ϕ ≈ 0o. In detail, the phase between the

viscous force component and the displacement is ϕ ≈ 360o (meaning the viscous force is

slightly behind the x displacement), and ϕFtotal−x is closer to zero than ϕFP−x. In the

main oscillation direction of y, these two phase values change to 180o (see figure 5.15).

However, ϕFV −y ≈ 270o, similar to that of the x direction as well as that for Regime

III. A quick look at the phase plots for the other unsteady regimes shows that ϕFV −y

and ϕFV −z have almost the same value of 270o. The z fluid force shows non-sinusoidal

history, which makes the phase plots distorted as shown in figure 5.15. As in the y

directional force and displacement, ϕFtotal−z ≈ 180o and ϕFP−z ≈ 180o.

Figure 5.16 shows the histories of the forces and displacement in the x direction for

Regime V represented by Re = 400. In the x direction, the total force advances the

displacement with the phase (ϕ) less than 45o and close to the condition of in-phase.

If we look at the pressure and viscous components of the total, the phase between the

122



x y z

Displacement

&

Total Force
-0.001

-0.0005

0

0.0005

0.001

900 920 940 960 980 1000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

900 920 940 960 980 1000

-0.01

-0.005

0

0.005

0.01

900 920 940 960 980 1000

Displacement

&

Pressure

Force
-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

900 920 940 960 980 1000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

900 920 940 960 980 1000

-0.01

-0.005

0

0.005

0.01

900 920 940 960 980 1000

Displacement

&

Viscous

Force
-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

900 920 940 960 980 1000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

900 920 940 960 980 1000

-0.01

-0.005

0

0.005

0.01

900 920 940 960 980 1000

Figure 5.15: History of the displacements (thick solid line) and the forces (thin dashed line)

forces at Re = 330 (Regime III). The abscissa of the history is the nondimensional time unit.

The insets of each subfigure are the phase plots between the displacement (abscissa) and the

force (ordinate). The axes in the phase plot are autoscaled to show the pattern more clearly.
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Figure 5.16: History of the displacements (thick solid line) and the forces (thin dashed line)

forces at Re = 400 (Regime III). The abscissa of the history is the nondimensional time unit.

The insets of each subfigure are the phase plots between the displacement (abscissa) and the

force (ordinate). The axes in the phase plot are autoscaled to show the pattern more clearly.

123



x and the viscous force components is less than that of the x and the pressure force

components. Nevertheless, the difference in the value of the phase is very small and

both values are all less than 90o. The pressure force component comprises about 90%

of the magnitude of the fluctuating x force. This portion of the force component is

similar to the forces in the y and z directions, as the sphere is a bluff body. Actually,

the oscillation in x direction is not of interest due to its minute oscillation (since it

is highly constrained) compared to that of y and z. The sphere oscillates mainly in

the y direction. It is obvious that total force and the displacement are out of phase,

i.e. ϕFtotal−y ≈ 180o. This is the same for the pressure component, and ϕFP−y ≈ 180o.

However, for he viscous component, ϕFV −y ≈ 270o as was observed for Regime III and

IV.
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Figure 5.17: History of the displacements (thick solid line) and the forces (thin dashed line)

forces at Re = 500 (Regime III). The abscissa of the history is the nondimensional time unit.

The insets of each subfigure are the phase plots between the displacement (abscissa) and the

force (ordinate). The axes in the phase plot are autoscaled to show the pattern more clearly.

Figure 5.17 shows the histories of the forces and displacement when Re = 500.

Even though this Re is categorised in Regime V (the same regime as Re = 400), the

oscillation in the z direction appears. The y and z oscillations are quite periodic at

this Re = 500, but their trajectories are very different from those of the Re = 400

case. Secondary oscillation is clearly observed in the x force and displacement. As a
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result, the phase plots exhibit a particular shape of limit cycle shown in figure 5.17

even though its amplitude is small. This is the case for oscillations in both the y and z

directions; their histories of displacement and force exhibit secondary (low frequency)

oscillations. Based on the phase plots for the y and z directions, it is indicated that

the total force and the corresponding displacement are out-of-phase. This is the case

for the pressure force component for both y and z.

5.3 VIV of a Buoyant Tethered Sphere: m∗ < 1

To examine the effect of mass ratio, the simulations for the mass ratios of m∗ = 0.909

and m∗ = 0.667 with selected Reynolds numbers were performed. Unlike the neutrally

buoyant case, tension plays a significant role on the VIV of a buoyant tethered sphere.

The time needed to reach the converged solution became shorter than that of the

m∗ = 1 case owing to the contribution of buoyancy to a restoring force. A comparison

of the response variables (the layover angle, and the amplitude and frequency of body

oscillation) with the m∗ = 1 case is presented.

5.3.1 Response of oscillation

Figures 5.18 to 5.20 shows the oscillation response of a tethered sphere with different

mass ratios. Overall, the layover angle decreases as the mass ratio decreases within

each flow regime; these regimes are shown divided by vertical dotted lines in the figure.

This behaviour is due to the relative buoyancy effect growing as m∗ decreases. At

a given mass ratio m∗, the layover angle decreases as the Re increases in regimes I

(Re = 50 − 205), V (Re = 335 − 500) and VI (Re = 550 − 800), except when m∗ = 1.

The range of Re for the regimes shows little difference between m∗ = 1 and 0.909.

However, when m∗ = 0.667, the Re range is shifted toward lower values in regimes II

to VI. This is apparent in figure 5.18 and 5.20. As a result, the beginnings of Regime

IV and V for m∗ = 0.667 are shifted relative to those of Regime III and IV for m∗ =

0.909 and 1, and the range of Regime II for m∗ = 0.667 is narrower than those of the

other mass ratios. Also of note is that the shift for high Re is larger than that of low

Re (figure 5.19 and 5.20).

Response characteristics within the regimes, even though the corresponding Re

ranges are slightly dependent on the mass ratio, they are very similar to that of a neu-

trally buoyant tethered sphere for the two mass ratios considered. The sphere remains
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Figure 5.18: Effect of m∗ on the layover angle
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Figure 5.19: Effect of m∗ on R amplitude

steady in Regime I and II, and shows two-threaded vortex loops trailing downstream

in the wake of Regime II. The sphere shows oscillation from Regime III, after which

suppressed oscillation of R in Regime IV is observed. In Regime V, the sphere oscil-

lates quite periodically, and finally shows chaotic wandering trajectories in the crossflow

plane within Regime VI.

Figure 5.21 demonstrates that a neutrally buoyant tethered sphere exhibits a differ-

ent amplitude oscillation response to that of a buoyant tethered sphere. This becomes

even more evident when the simulations for a vertically tethered sphere in section 5.2

are considered. They show quasi-circular motion that is observed in the experiments

for a neutrally buoyant sphere at higher Reynolds numbers. However, considering the
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departure of layover angle from 90o at high Reynolds numbers, it is not expected that a

buoyant tethered sphere would develop such a quasi-circular motion at higher Reynolds

numbers.
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Figure 5.21: Effect m∗ in Regimes II to IV. This is a magnified figure of the box in

figure 5.19. The thickest line corresponds to the m∗ = 1 case.

5.4 Effect of the Reynolds number on the response

Attempts have been made to find a reason for the difference between the numerical and

experimental VIV studies so far. Two of the differences are: Maximum amplitude of

oscillation and appearance of the oscillation modes. A few recent studies concerning

VIV of an elastically mounted cylinder have suggested that such differences might

be due to the Re difference. With this in mind, a series of numerical simulations were

carried out for a buoyant tethered sphere. It is found that the Re does have a significant

effect on the maximum oscillation amplitude, the range of high-amplitude oscillation

and the chaotic oscillation.
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The mass ratio and the tether length were set to 0.833 and 10D, respectively, to

match the conditions of previous studies. The reduced velocity was varied from 0.5 to

35 by changing a parameter related to gravity (g). This parameter is termed α, and

defined as α ≡ 4
3

gD
U2 for the sphere. If the parameter α varies, while keeping U and

D constant, the gravity will vary. This, in turn, will change the natural frequency of

a tethered body as fn = 1
2π

√

T
(m+ma)L where T is the tether tension, m is the body

mass and ma is the added mass. Recalling the definition of U∗ ≡ U
fnD

, the change of fn

will change the U∗ even when the flow speed is constant. Contrary to the experimental

studies, where a range of U∗ was obtained by changing the flow speed U , a range of U∗

was obtained by changing the gravity term and keeping U constant. By adopting this

procedure, Re can be held at one value while U∗ varies at a given fluid viscosity. The

Reynolds numbers representing the regimes IV to VI found in section 5.2 were chosen

for each set of simulations. These Re are 400, 500 and 800.

Figure 5.22 shows the layover angle of the tethered sphere. At a given U∗, the

layover angle at low Re is greater than that for higher Reynolds numbers. This trend

becomes apparent when U∗ > 14. The dependence of the maximum attainable U∗

on Re is also observed. The U∗ corresponding to the layover angle (ϑ) of 45o is of

importance because the change of the main oscillation direction from x to y happens

once ϑ > 45o. This value of U∗ is close to 30 for all the Reynolds numbers investigated.

Figure 5.23 shows the variation of oscillation amplitude as a function of U∗. The
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Figure 5.22: Re effect on layover angle. m∗ =0.833 and L=10D.
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Figure 5.23: Re effect on oscillation amplitude. m∗ =0.833 and L=10D.

amplitude is the sum of RMS values of the three displacements divided by the sphere

diameter. There are two key features in figure 5.23. The first one is that there is a

U∗ range of high-amplitude oscillation for all Reynolds numbers considered, and the

maximum amplitude within this high-amplitude range is dependent on Re. This range

covers U∗ = 5 − 12 for Re = 400 and 500, and U∗ = 5 − 15 for Re = 800. The amplitude

peaks at U∗ ≈ 8, and its value increases as Re increases from 400 to 800. Contrary to

the case for the two other Reynolds numbers, another peak appears at U∗ ≈ 15 when

Re = 500. This is due to a quasi-periodic oscillation in the lateral direction (z), and the

same type of oscillation is also observed at neighbouring reduced velocities when Re =

500. Note that x is the streamwise direction and y is the transverse direction. Despite

this z oscillation, Re = 500 is classified as the same regime (Regime V) as Re = 400

because it is not yet clear whether Re = 500 is a transitional regime and, moreover,

Regime VI is chaotic.

The second is that the oscillation undergoes a significant change after the high-

amplitude range, particularly when U∗ passes through the value of U∗ = 30. When

Re = 400, the amplitude decreases in the range U∗ = 10 − 28. However, the amplitude

goes through an abrupt jump at U∗ ≈ 30 and then returns to a small value. Similar

amplitude response is observed for the Re = 500 case, except the peak occurs at U∗

≈ 15 and the amplitude fluctuation after U∗ = 30. When Re = 800, the decrease of

amplitude starts from U∗ = 12 and ends at U∗ ≈ 17. After this decreases, the time
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traces of x and y as well as z exhibit chaotic behaviour. A jump at U∗ ≈ 30 and

the amplitude fluctuation are observed as in the previous two Re cases. The jump in

amplitude around U∗ = 30 is due to the change of layover angle over 45o for all the

Reynolds numbers considered. For the higher Re = 500 and 800 cases, this change

of layover angle is expected to have an effect on the fluctuation amplitude when the

layover angle is greater than 45o and the displacement history becomes chaotic.

5.5 VIV of a Vertically Tethered Sphere

Simulations for a vertically tethered sphere were performed using a modified numerical

code adapted for the neutrally buoyant tethered sphere. The modification was done

only for the equations of motion for the sphere as the equations for the fluid flow are

the same as previous cases.

In the vertical tethering case, the tension, T , is described by

T = (Fx − B + W ) cos θ + Fy sin θ cos φ + Fz sin θ sin φ. (5.11)

The mass ratio is assumed to be m∗ ≥ 1 to compare the numerical results with the

experimental results of Provansal et al. (2004), but the cases of m∗ < 1 can be solved

easily by changing the signs of the buoyancy (B) and the sphere weight (W ).

Flow

+
Drag

Gravityz

x

y

δ

Buoyancy

Lift

Lateral Force

Figure 5.24: Schematic of a vertically tethered sphere.
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Accordingly, the equations of motion result in

mẍ = (Fx − B + W ) − T cos θ, (5.12)

mÿ = Fy − T sin θ cos φ, (5.13)

mz̈ = Fz − T sin θ sin φ. (5.14)

A schematic of the vertically tethered sphere is shown in figure 5.24.

5.5.1 Response of oscillation

The trajectories of the sphere in the xy, yz, and zx planes are shown in figure 5.25.

Large oscillations are observed in the yz plane for all the Reynolds numbers considered

because gravity is aligned to the flow, resulting in the layover angle θ = 90o. Within
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Figure 5.25: Trajectories in xy (first column), yz (second column), and zx (third column)

planes at various Reynolds numbers. All the axes are in the same scale. Each tic represents

0.5D, and the mean position of the sphere is allocated to the (0, 0).
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the range of Re = 210 − 400, the sphere oscillates on a straight line, and its amplitude

grows as Re increases. For reference, all the reduced velocities for the Reynolds numbers

considered were close to 6.1 due to the layover angle of 90o, thus the natural frequency

of this tethered sphere is the inverse of 6.1, or 0.1640. The sphere exhibits the quasi-

circular motion when Re ≥ 500.

The oscillation frequencies in y and z directions are given in table 5.2. It is clear

that the oscillation frequency is the same as the natural frequency, as was reported by

Provansal et al. (2004). This is due to the effect of mass ratio and is well known for

the VIV of a cylinder oscillating transversely. Therefore, it is claimed that a vertically

tethered cylinder with a mass ratio m∗ > 1 oscillates at its own natural frequency on

a straight line or a circle in the crossflow plane.

The phase plots of the force coefficient and displacement for each direction are shown

in figure 5.26. This figure clearly shows that the fluid force and the displacement are

in-phase both in the y and z directions. In contrast, a specific phase relation appears

for the case of the quasi-circular motions (Re > 500) in the x direction. Note that the

magnitude of x oscillation is minute compared to that of the other directions.

The forcing affecting the motion of the sphere in a given plane is now considered.

As the dominant directions of oscillation are y and z, we focus on the crossflow plane.

The trajectory in this plane and the phase plots of y − Cz and z − Cy are given in

figure 5.27 to investigate the mechanism responsible for quasi-circular motion of the

sphere. They demonstrate that the body motion is controlled by both of the forces in

Re f∗

y f∗

Cy
f∗

z f∗

Cz

210 0.1562 0.1562 - -
270 0.1562 0.1562 - -
330 0.1660 0.1660 0.1660 0.1660
400 0.1660 0.1660 0.1660 0.1660
500 0.1660 0.1660 0.1660 0.1660
600 0.1660 0.1660 0.1660 0.1660
700 0.1758 0.1758 0.1758 0.1758
800 0.1758 0.1758 0.1660 0.1660

Table 5.2: Oscillation frequency at various Reynolds numbers. The dimensionless frequency
is f∗ = fD/U . Note that the natural frequency of the tethered sphere is 0.1640. Thus, the
vertically-tethered sphere, where m∗ = 2.43, oscillates at its natural frequency.
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Figure 5.26: Phase plots of the force coefficients and the displacements in the same direction

at various Reynolds numbers. Each column corresponds to x − Cx, y − Cy, and z − Cz from

the left. The results are from the simulations using the similar condition of Provansal et al.

(2004), where m∗ = 2.433, L = 9D, and g = 9.807m2/s.

the y and z directions. This becomes clear for the cases of quasi-circular motion, where

the magnitude of Cy and Cz are comparable.

Figure 5.28 is given to support the dominant effect of Cz on the body motion in

the zx plane. Comparison of the phase plots of Cz − x and and Cx − z reveals the

motion in this plane is controlled by Cz not by Cx. This is because of the relatively

large magnitude of the x directional fluid force in total, which allows little fluctuation

of Cx. Contrary to the case where the gravity is acting horizontally, the magnitude of

Cy fluctuation is about the same as that of Cz. Interestingly, this balance in magnitude

of Cy and Cz fluctuations is truly the case of a neutrally buoyant tethered sphere. This

similarity between the vertically tethered sphere and the neutrally buoyant tethered

sphere results in the quasi-circular motion. Details of the similarity is discussed in

section 5.5.2.

A typical vortex structure of the vertically tethered sphere showing a circular motion
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Figure 5.27: yz trajectories (the first column), and cross phase plots of the force coefficients

and the displacements in this plane at various Reynolds numbers. The second column is

y − Cz , and the third column is z − Cy . All the plots are autoscaled to their extreme values

to be easily compared. The order of rows, and the set of data used, are the same as those of

figure 5.26.
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Figure 5.28: zx trajectories (the first column), and cross phase plots of the force coefficients

and the displacements in this plane at various Reynolds numbers. The second column is

z − Cx, and the third column is x − Cz. Other details of the figure are the same as those of

figure 5.27.
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is given in figure 5.29. The vortex shows a helical structure as it sheds downstream.

This is remarkably different to the vortex structures observed for the oscillation on a

straight line, exhibiting hairpin-shaped vortex loops forming on alternating sides. As

the vortices shed, they follow the helical path and the negative vorticity grows due to the

anticlockwise rotation of the body in the crossflow plane. A low level of asymmetry is

observable in the vorticity plots adjacent to the sphere, being also an effect of rotational

direction.

Interestingly, the vortex structure seems unchanging when viewed from the non-

inertial frame attached to the rotating body. This is deduced from the observation of

an animation made of successive images of streamwise vorticities. This phenomenon

was reported for a sphere rotating in a streamwise direction at a certain rotational speed

(Kim & Choi 2002). They termed this unchanging state of vortex structure the frozen

state and used the phase plot showing a perfect circle in the crossflow plane to identify

this frozen state. This is indeed the case of the vertically tethered sphere because, at

the Reynolds number of 600 at which the simulation for figure 5.29 was performed, the

phase plot in the crossflow plane clearly shows a circle. It is expected that the frozen

xz view

xz view

Figure 5.29: Vortex structure around the vertically tethered sphere. The first row is the

streamwise vorticity and the second row is the field defined in Jeong & Hussain (1995). Re

= 600, m∗ = 2.63, g = 9.807 m/s2, and L = 9D. Helical structure is evident.
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state of the vortex structure is closely related to the dimensionless rotational speed ω∗,

where ω∗ = ωD
U

, of the sphere as is the case for the rotating sphere in the streamwise

direction. Kim & Choi (2002) reported that the rotational speeds at which the frozen

state occurs increase as Re is raised, being ω∗ = 0.1 and 0.3 at Re = 250 and ω∗ =

0.5 and 0.6 at Re = 300. For the vertically tethered sphere at Re = 600, ω∗ = 1.0.

This interesting aspect of the vertically tethered sphere can be considered as a topic of

future work.

Due to the inability to visualise the vortex structure in the water channel experi-

ments, it is impossible to directly compare the vortex structure for a neutrally buoyant

sphere to that for a vertically tethered sphere, particularly when the body exhibits a

circular motion. However, it is reasonable to expect that the vortex structure for a

neutrally buoyant sphere would be similar to that shown in figure 5.29 based on the

quasi-circular motion observed.

5.5.2 Comparison to VIV of the neutrally buoyant tethered sphere

In this section, a comparison between the body motion and wake structure for the three

types of tethering is presented. They are: horizontal tethering, vertical tethering, and

the tethering without the influence of gravity which is the case of a neutrally buoyant

tethered sphere. An emphasis is on the similarity of the neutrally buoyant tethered

sphere to the vertically tethered sphere.

Figure 5.30 shows diagrams of the magnitude of mean forces in the Cartesian coor-

dinate for the three tethering types. In the case of horizontal tethering, all three have

different magnitudes due to the fluid flow in the x direction and the buoyancy in the y

direction. When m∗ 6= 1, the body is susceptible to oscillate in the z direction as the

mean force (Fz) in this direction is the smallest. Therefore, it might be expected that

the fluctuation of Fz (represented by C ′

z) is greatest and dominates the body oscillation.

The level of C ′

z is dependent on the mass ratio m∗ and the Reynolds number Re as

they vary the magnitude of the forces in the x and y direction. Of note is that the

natural frequency of the body, fn, is dependent on these two parameters as fn varies

as the layover angle changes. Thus, the suitability of the reduced velocity U∗ has to be

considered according to m∗ and Re.

In contrast, the mean forces in the y and z directions can have the same order of

magnitude as for the other two cases because of symmetry. The total magnitude of the
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Figure 5.30: Magnitude of the mean forces in the Cartesian directions for three different

types of tethering. The flow is coming from the left.

x force is the greater than that for the horizontal tethering case because the gravity

(buoyancy) is acting parallel to the x direction. This is also the case for the tethered

sphere with neutral buoyancy except that the magnitude of Fx is smaller than that for

the vertically tethered sphere. Based on this similarity in the relative magnitude of the

forces, phase plots in the yz plane and the zx plane are compared.

The phase plots in the yz plane at Re = 270 are presented in figure 5.31. The motion

in the yz plane is clearly dominated by C ′

z for the horizontal tethering, but it is not easy

to tell whether it is C ′

y or C ′

z that dominates the body motion. For the neutrally buoyant

case, both phase plots of ϕy−Cz
and ϕz−Cy

indicate out-of-phase relation, which is the

same as for the vertically tethered case. Note ϕz−Cy
for the horizontal tethering shows

a completely different pattern to the other cases. Figure 5.32 shows the dominating

role of C ′

z in the zx plane where C ′

x is smaller than C ′

z. It is obvious, for all types,

that the zx motion is controlled by C ′

z based on the fact the x−Cz plots resembles the

z−x plots when they are rotated 90o counterclockwise. Of course, this is not surprising

given the x motion is restricted and dictated by the motion in the zx plane.

At Re = 330, the dominating role of C ′

z is discernible between the horizontal case

and the other two cases (figure 5.33). The yz motion is decided by C ′

z for the horizontal

tethering, but is decided by C ′

y for the neutrally buoyant case as well as for the vertical

tethering case. In addition, the forces and the displacements are out-of-phase (ϕz−Cy
=

ϕy−Cz
≈ 180o) for these two cases, whereas they are in-phase for the horizontal case.

However, the zx motion is decided by C ′

z for all three types of tethering (see figure 5.34),

as is the case for Re = 270. This supports the importance of the relative magnitude of

the mean fluid forces described in figure 5.30.
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Figure 5.31: Trajectories (first column) and phase plots in yz plane at Re = 270. The

second column is y − Cz , and the third column is z − Cy. All the plots are autoscaled to its

extreme values to be easily compared.
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Figure 5.32: Trajectories (first column) and phase plots in zx plane at Re = 270. The

second column is z − Cx, and the third column is x − Cz . All the plots are autoscaled to its

extreme values to be easily compared.
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Figure 5.33: Trajectories (first column) and phase plots in yz plane at Re = 330. The

second column is y − Cz, and the third column is z − Cy. All the plots are autoscaled to its

extreme values to be easily compared.
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Figure 5.34: Trajectories (first column) and phase plots in zx plane at Re = 330. The

second column is z − Cx, and the third column is x − Cz . All the plots are autoscaled to its

extreme values to be easily compared.
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Figures 5.35 and 5.36 are presented to confirm the difference between the horizontal

tethering and the neutrally buoyant tethering, and to mention similarities and differ-

ences between the cases of vertical tethering and neutrally buoyant tethering. At this

Reynolds number of Re = 500, the horizontally tethered sphere where m∗ = 0.667 al-

ready shows chaotic wandering in the yz plane, and the phase relationship observed for

the lower Reynolds numbers no longer exists. However, the vertically tethered sphere

exhibits a circular motion with the same value of C ′

y and C ′

z, indicating the dominating

role of both of them on this circular motion. For the neutrally buoyant tethering, the

sphere oscillates on a double or triple figure-of-eight (Lissajous figure of the order more

than two). From the phase plots, it is clear that C ′

y dominates the yz motion for the

neutrally buoyant case. As is the case for the lower Reynolds numbers, C ′

z determines

the zx motion as shown in figure 5.36. Note that the C ′

y values for the vertical and

neutrally buoyant tethering are larger than C ′

z. This is because the initial condition

is given as a perturbation only in the y direction, as there is no preferred direction of

oscillation for these two cases at low Reynolds numbers below 500.

The Lissajous figure observed for the neutrally buoyant tethered sphere at Re =

500 seems to have a relationship to the inception of a circular motion for the vertically
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Figure 5.35: Trajectories (first column) and phase plots in yz plane at Re = 500. The

second column is y−Cz, and the third column is z−Cy. All the plots are autoscaled to their

extreme values to be easily compared.
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tethered sphere at the same Re. For the neutrally buoyant tethered sphere, chaotic wan-

dering appears at Re > 550, thus, it is suspected that the Lissajous figure at Re = 500

is a precursor to a chaotic wandering of Regime VI. However, for the vertically tethered

sphere, the circular motion appears at Re = 500, following the amplitude saturation

in the main direction of oscillation at lower Reynolds numbers. At higher Reynolds

numbers (Re > 700), the vertically tethered sphere shows a motion departing from a

perfect circle.

Based on phase plot analysis and the quasi-circular motion being experimentally

observed, it is argued that the VIV of a neutrally buoyant tethered sphere is more

similar to that of a vertically tethered sphere than that of a horizontally tethered sphere.

As these mean forces decide the level of force fluctuations, the oscillation trajectories

at high Reynolds numbers are related to the magnitude of the mean forces.
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Figure 5.36: Trajectories (first column) and phase plots in zx plane at Re = 500. The

second column is z−Cx, and the third column is x−Cz . All the plots are autoscaled to their

extreme values to be easily compared.

5.6 Chapter Conclusions

For the neutrally buoyant (m∗ = 1) tethered sphere, it is found that there exist seven

different flow regimes in the range of Re = 50 − 8000 in terms of the mean layover angle,

amplitude of oscillation, frequency of oscillation and trajectory of oscillation in the
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crossflow plane. The first six regimes were determined by direct numerical simulations

and the seventh regime was found through experiments.

The first regime, Regime I, covers the range of Re = 50 − 205, and the sphere re-

mains still with layover angle ϑ = 90o. Regime II starts at Re = 210. The flow is

steady but asymmetric. Thereafter, the sphere offsets from the symmetry axis and the

layover angle decreases as Re increases. This regime exists up to Re = 250.

As Re increases further, the sphere starts to vibrate at Re = 270, the start of Regime

III. Regime IV begins at Re = 300. It shows a steep decrease of the layover angle,

indicating the body offsets more from the pivot axis than other regimes. The sphere

predominantly oscillates in the azimuthal direction with a frequency of St = 0.111,

which is close to that of the stationary sphere (St = 0.134) but much higher than its

natural frequency (St ≈ 0.029).

In Regime V covering Re = 335 − 500, the layover angle returns to ϑ = 90o. In

contrast to Regime IV, the sphere predominantly in the radial direction. The amplitude

of oscillation in Regime V gradually increases as Re is increased. The frequency of the

radial displacement for Regime V is 0.104. The St is also close to (but still less than)

that of the fixed sphere (St = 0.134). In Regime VI, the vibrations become chaotic

and the sphere undertakes chaotic wandering, having no restoring forces. The range of

Re for Regime VI covers both simulations and experiments, and the existence of the

regime is verified by observing the irregular pattern in the experiments.

In Regime VII (Re ≥ 3000), the oscillation changes to quasi-circular from an ir-

regular pattern. As Re is raised further, the sphere motion exhibits more clearly a

circular shape. Table 5.3 summarises the seven regimes found for the neutrally buoyant

tethered sphere.

To examine the effect of mass ratio, the simulations for the mass ratios of m∗ = 0.909

and m∗ = 0.667 with selected Reynolds numbers have been performed. Response char-

acteristics within the regimes, even though the corresponding Re ranges are dependent

on the mass ratio, are very similar to that of a neutrally buoyant tethered sphere for all

the mass ratios considered. The sphere remains steady in Regime I and II, and shows

two-threaded vortex loops trailing downstream in the wake of Regime II. The sphere

shows oscillation from Regime III, after which suppressed oscillation of R in Regime

IV is observed. In Regime V, the sphere oscillates quite periodically, and finally shows

chaotic wandering trajectories in the crossflow plane within Regime VI. However, a neu-
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Regime Reynolds number Trajectory Wake Characteristics

I 50 ≤ Re < 210 N/A Steady, axisymmetric.

II 210 ≤ Re < 270 N/A Steady, non-axisymmetric,
planar-symmetric, “double
thread” wake vortex formation.

III 270 ≤ Re < 300 Line Unsteady periodic, planar-
symmetric, start of periodic
vortex shedding.

IV 300 ≤ Re < 335 Line Unsteady periodic, no planar-
symmetry, periodic vortex shed-
ding in the form of vortex loops.

V 335 ≤ Re < 600 Line Unsteady periodic, planar-
symmetric, periodic vortex
shedding in the form of vortex
loops.

VI 600 ≤ Re < 3000 Irregular Unsteady non-periodic, vortex
shedding pattern becomes irregu-
lar.

VII 3000 ≤ Re < 8000 Quasi-circle Unsteady periodic, helix-shape
vortex formation without shed-
ding.

Table 5.3: Regimes of the flow and response of the neutrally buoyant tethered sphere for
the range of Re = 50 – 8000. The trajectories are those of the oscillating sphere are on the
crossflow (yz) plane.

trally buoyant tethered sphere also exhibits a difference in oscillation response to that

of a buoyant tethered sphere, in particular for Regime III (Re = 270 − 300) and Regime

VII (Re > 3000). The difference becomes even more evident when the simulations for

a vertically tethered sphere are considered.

The effect of Re on the VIV of buoyant tethered spheres has been numerically

examined as an attempt to find a reason for the difference between the numerical and

experimental studies on this topic. For a tethered sphere of m∗ = 0.833 and L∗ = 10

with varying U∗, it is found that Re does have a significant effect on the oscillation

amplitude. The high-amplitude range covers U∗ = 5 − 12 for Re = 400 and 500, and

U∗ = 5 − 15 for Re = 800. The amplitude peaks at U∗ ≈ 8, and its value increases as

Re increases from 400 to 800.

Moreover, the oscillation undergoes a significant change after the high-amplitude

range, particularly when U∗ passes through the value of U∗ = 30. At Re = 400 and

500, the amplitude decreases in the range U∗ = 10 − 28. An abrupt jump follows at

U∗ ≈ 30 and then returns to a small value. However, at Re = 800, the decrease of

amplitude starts from U∗ = 12 and ends at U∗ ≈ 17. After this decrease, the time
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traces of x and y as well as z exhibit chaotic behaviour. Importantly, the amplitude

response at the highest Re = 800 shows similarity to that of previous experimental

studies at much higher Re within U∗ = 1 − 30. Based on this, it is highly likely that

the difference in amplitude response between the simulations and the experiments for

the VIV of tethered bodies is due to the difference in the Re ranges.

A comparison between the three types of tethering (horizontal tethering, vertical

tethering, and the tethering of a neutrally buoyant sphere) reveals that VIV of a neu-

trally buoyant tethered sphere is closer to that of a buoyant tethered sphere with vertical

tethering. This is confirmed by the discovery of a quasi-circular motion both for the

neutrally buoyant tethered sphere and the vertically tethered heavy sphere. This results

from the similarity of the force balance and the relative magnitude of the forces acting

on the sphere. By analysing the phase plots between the force and the displacement,

it is also found that the pattern of trajectory depends on the relative magnitude of the

mean forces in each direction, as these mean forces decide the level of force fluctuations.
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Chapter 6

Effect of Tether Elasticity on
VIV of a Tethered Bluff Body

6.1 Introduction

In this chapter, a study to find the effect of making the tether elastic on VIV of a

tethered body is presented. The tether elasticity was modelled as a linear spring force

allowing the tether tension to be defined, rather than to depend on the constraint of

forcing movement on a circle or spherical surface. This corresponds to adding one

more degree-of-freedom to the body motion. The tension (T ) was calculated using

equation 6.1 instead of the equations presented in chapter 3.

T = k(L0 − L). (6.1)

The parameter k is the mechanical spring constant, L0 is the tether length at equilib-

rium, and L is the tether length at the current instant of time.

A non-dimensional spring parameter kt is defined using equation 6.2

kt =
2πU

D

√

mb

k
. (6.2)

This is effectively a reciprocal Strouhal number for the oscillation frequency of the

spring-mass system.. Alternatively it can be considered to be a “reduced velocity” or

dimensionless oscillation period.

A buoyant body of m∗ = 0.833 was chosen because, in this case, the effect of

elasticity is greater than that for the neutrally buoyant body. A range of the reduced

velocity, U∗, is obtained by varying the parameter α. The definition of the parameter

α and its relation to the Froude number Fr is given in equation 6.3 for cylinder, and

equation 6.4 for sphere.
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α =
2

π

gD

U2
=

2

π

1

Fr2 (Cylinder) (6.3)

α =
4

3

gD

U2
=

4

3

1

Fr2 (Sphere) (6.4)

The initial tether length was set to 10D for both bodies, consistent with the previous

studies.

6.2 VIV of an Elastically Tethered Cylinder

A schematic of the elastically tethered cylinder is shown in figure 6.1 where a spring

force is introduced to the tether.

y

x
Flow

θ + δ Gravity

Lift + Buoyancy

DragSpring Force

Figure 6.1: Schematic of a elastically tethered cylinder.

Before investigating the effect of tether elasticity on the VIV of a buoyant cylinder,

a series of simulations at a high value of U∗ (= 28) and m∗ = 1 were carried out

to locate a critical value of the parameter kt. Due to its mass ratio being unity, the

layover angle will be close to 90o and hence the tether length will change mainly in

the streamwise direction. Figure 6.2 shows that the oscillation amplitude undergoes a

change around kt = 2 for the three Reynolds numbers considered (Re = 100, 200 and

250). The inverse of this kt value (1/kt = 0.5) is equivalent to the oscillation frequency

of the tethered cylinder, and is close to twice the frequency (0.21) for a transversely

oscillating cylinder. As the streamwise oscillation for the tethered cylinder is at twice

the frequency of the transverse oscillation, it makes sense that the critical value of kt

is around 2.

Following the determination of the critical value of kt at which inline resonance

occurs, simulations were performed at several values of kt around and beyond the
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Figure 6.2: Total amplitude of oscillation as a function of the parameter kt. m∗ = 1, L0 =

10D and U∗ ≈ 28.

critical value of 2. These kt values are 0.1, 5, 6 and 8. The Reynolds number was kept

constant at 200 to maintain a two dimensional flow field. A range of U∗ from 1 to 31

was obtained by changing the parameter α as mentioned before.

6.2.1 Response of the tethered cylinder

Figure 6.3 shows the variation of the mean layover angle ϑ with increasing kt. The

increase of kt corresponds to the increase of the tether elasticity. The dotted vertical

lines indicate the four representative reduced velocities of U∗ = 3.4, 11.6, 28.2 and 31.8

to be used to compare the details of the response. Two main features are observed.

The first is the larger ϑ for the elastically tethered cylinders below a specific U∗. These

values are: U∗ = 20 (kt = 8), 25 (kt = 6) and 27 (kt = 5). The layover angle ϑ grows

with increasing kt at a given U∗ below these reduced velocities.

The second feature is the opposite trend of ϑ with increasing kt when U∗ is in-

creased over the specific reduced velocities mentioned above, i.e., when U∗ ≥ 20 (kt =

8), U∗ ≥ 25 (kt = 6) and Ur ≥ 27 (kt = 5). Within the U∗ range, ϑ for the elastically

tethered cylinders is smaller than that for the inelastically tethered cylinder. These val-

ues of U∗ for each kt correspond to ϑ = 40 – 60o for the elastically tethered cylinders.

This range includes ϑ = 45o, where the switch-over of the main oscillation direction

from y to x for the inelastically tethered cylinder occurs; therefore, this switch-over

is linked to the change of the ϑ trend. The above two features in the ϑ response are
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Figure 6.3: The effect of kt on the layover angle. m∗ = 0.833 and L0 = 10D.

mainly due to the change of the mean force in the x direction (Cx). As is known from

the force balance of the tethered cylinder, the cylinder lays over more when the mean

x force increases. It is clearly shown in figure 6.4 that the U∗ range of larger Cx for

elastically tethered cylinders (kt ≥ 5) matches well with that of larger layover angle in

figure 6.3 for each kt value.

The amplitude response is also dramatically changed as kt is increased beyond the
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Figure 6.4: The effect of kt on the mean Cx. m∗ = 0.833 and L0 = 10D.
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value of 2. In figure 6.5, the amplitude increases at low U∗ for the cases of an inelastic

tether and of an elastic tether with a subcritical parameter (kt = 0.1). However, when kt

is raised above the critical value of 2, the amplitude is about 0.7D at these low reduced

velocities. This amplitude is much higher than the maximum amplitude of inelastic or

subcritical elastic cases. This opposite behaviour at low U∗ is due to the difference in

the degrees of freedom allowed to each system. The tether elasticity gives the body an

ability to oscillate in the transverse direction even at low layover angles, and this in

turn causes the change in amplitude response. This behaviour is also consistent with

the changes in the mean Cx at these low reduced velocities of U∗ < 5 (see figure 6.4).

The amplitude at different kt values is closely related to the mean Cy values shown

in figure 6.6. It is indicated that, when U∗ = 5 – 25, the amplitude difference between

the kt values is due to the change of the mean Cy values. It is also clear that the larger

amplitude of the inelastically tethered cylinder at the higher U∗ ≥ 27 is due to the

smaller mean values of the Cy shown in figure 6.6. Moreover, the maximum amplitude

occurs when the mean Cy is the minimum. Note that the mean Cy is negative for entire

range of U∗ = 1 – 33. This is consistent with the work of Ryan et al. (2004a) who

reported that, for a inelastically tethered cylinder, maximum amplitude occurs when

the mean Cy has the minimum value.
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Figure 6.5: The effect of kt on the total RMS values. A∗ = Ax
∗ + Ay

∗. m∗ = 0.833 and

L0 = 10D.
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Figure 6.6: The effect of kt on the mean Cy. m∗ = 0.833 and L0 = 10D.

6.2.2 Trajectory, forcing and phase of the oscillating cylinder

Figure 6.7 shows the xy trajectories of the cylinder at the four reduced velocities indi-

cated by the vertical dotted lines in figures 6.3 and 6.5. As expected from the response

of the layover angle and oscillation amplitude, the kt = 0.1 case exhibits little differ-

ence to the inelastic tethered (kt = 0) case. The inelastic and kt = 0.1 cases show

their maximum oscillation amplitude at U∗ = 28.2 among the four reduced velocities.

At kt = 2, which corresponds to the critical value determined at the beginning of sec-

tion 6.2, the maximum amplitude of oscillation also appears at U∗ = 28.2 but exhibits

a slowly varying motion, with the principal oscillation contrary to the cases of kt = 0

and 0.1. The kt = 2 case also shows larger and different oscillation patterns at the U∗

= 3.4 and 11.6 compared with the inelastic case.

The oscillation pattern changes remarkably when kt > 2, i.e., kt = 5, 6 and 8

in figure 6.7. The difference to the inelastic case is highlighted at the two reduced

velocities of U∗ = 3.4 and 11.6. The oscillation amplitude for the elastic case is largest

at U∗ = 11.6, whereas it is largest at U∗ = 28.6 for the inelastic case among the four

reduced velocities. More interestingly, the trajectory at U∗ = 3.4 and 11.6 shows a

figure-of-eight pattern. This oscillation pattern has been reported for the VIV in the

case of a cylinder that is free to move in the streamwise (x) direction as well as in the

transverse (y) direction (Jauvtis & Williamson 2004; Sanchis et al. 2008). The figure-
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Figure 6.7: Trajectory in xy coordinate with varying kt. The abscissa is x and the ordinate

is y for each subfigure.

of-eight pattern is due to the additional freedom allowing the cylinder to move in the

direction parallel to the tether, as in the previous studies of VIV of the cylinder with

two-degrees-of-freedom. The oscillation amplitude is suddenly reduced as U∗ increases

beyond 25 as the response plot of the amplitude shows. At the higher U∗, the oscillation

151



pattern is no longer a figure-of-eight.

The phase plots of the x and y forces (Cx−Cy) are given in figure 6.8. They indicate

the difference between the cases of an elastically tethered cylinder and an inelastically

tethered one by exhibiting entirely different patterns. The pattern of the phase plot of

kt U∗ = 3.4 U∗ = 11.6 U∗ = 28.2 U∗ = 30.7
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Figure 6.8: Phase plot of total forces (Cx − Cy) in xy coordinate with varying kt. The

abscissa is Cx and the ordinate is Cy for each subfigure.
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Cx − Cy shows magnitudes that are smaller for Cy and larger for Cx compared with

those of the discrete values of kt tested, particularly at the low reduced velocities of

U∗ = 3.4 and 11.6. It is also clear that the kt = 2 case is the critical case distinguishing

the VIV response of the tethered cylinder with or without tether elasticity.

Figure 6.9 shows the phase plots between the displacement and the force in both

the x (x − Cx) and y (y − Cy) directions. At each U∗, the inelastic and the kt = 0.1

cases show essentially the same pattern for both x − Cx and y − Cy. However, the

patterns for kt = 5, 6, and 8 are distinctly different to those for the inelastic, and the

kt = 0.1 cases. At each U∗, the phase plots for kt = 5, 6, and 8 are similar to each

other, or exhibit a gradual change. The kt = 2 case is again identified as the critical

case dividing inelastic and elastic tethering cases by showing entirely different phase

plots for sets on either side.

In summary, it is found that the elastically tethered cylinder, for which kt > 2,

shows different VIV to that of inelastically tethered cylinder. It is also found that, for

the elastically tethered cylinder, the trajectory at the low reduced velocities shows a

figure-of-eight pattern, similar to the VIV of a cylinder with two degrees-of-freedom (in

the x and y directions simultaneously). Note that, at these low reduced velocities, the

elastically tethered cylinder oscillates mainly in the y direction whereas the cylinder

with an inelastic tether oscillates mainly in the x direction.

3.4 11.6 28.2 30.7 U∗ 3.4 11.6 28.2 30.7

kt = 0

Inelastic

kt = 0.1

kt = 2

kt = 5

kt = 6

kt = 8

x − Cx y − Cy

Figure 6.9: Phase plot between the displacement and the force. The abscissa is the dis-

placement and the ordinate is the force for each subfigure. The axes are autoscaled to show

the pattern easily.
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6.2.3 Vortex structure around the oscillating cylinder

Figure 6.10 contrasts the vortex structures (rendered by spanwise vorticity) of the

inelastic and elastic cases. Each figure was captured at its top position during one

cycle of oscillation. All of the figures show a 2S wake mode, but they are different in

terms of wake width and vortex shedding direction, particularly for the elastic case.

Despite the considerable change in the layover angle in this U∗ range of U∗ = 1 − 33,

all vortex structures, for the inelastically tethered cylinder, show narrow and well-

aligned shedding vortices. The cylinder oscillates mainly in the transverse direction

at U∗ = 30.7, but mainly in streamwise direction at U∗ = 3.4. At the intermediate

values of U∗ = 28.2 and U∗ = 11.6, the cylinder oscillates in both directions. The wake

width is greatest at U∗ = 28.2 when the cylinder oscillates at its maximum amplitude,

although it is not very distinct from the others. The formation length of the vortex

gets shorter as U∗ decreases from 30.7 to 11.6. This length, however, becomes slightly

longer at U∗ = 2. This slight increase seems due to the change in oscillation direction

Elastic Tether, Supercritical Inelastic Tether

U∗ = 3.4

U∗ = 11.6

U∗ = 28.2

U∗ = 30.7

Figure 6.10: Spanwise vorticities at the top of the cycle for the elastically (kt = 5) tethered

cylinder and inelastically tethered cylinder at various U∗. Flow is coming from left.
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when the layover angle surpasses 45o, where the cylinder is more prone to oscillate in

the streamwise direction. The spacing of the shed vortices follows the same trend as

the vortex formation length.

Vortex structures for the elastically tethered cylinder, where the kt value is super-

critical (kt = 5), show huge differences at the intermediate and low reduced velocities.

Vortices are shed downstream with an angle to the flow at the intermediate reduced

velocities of 28.2 and 11.6. The shedding orientation is dependent on the oscillation di-

rection of the cylinder. When the cylinder oscillates parallel to the tether (U∗ = 28.2),

the vortex sheds downward (negative y direction). In contrast, the vortex sheds up-

ward when the cylinder oscillates normal to the tether (U∗ = 11.6). At low U∗ = 3.4,

the cylinder oscillates in the transverse direction with a mean layover angle of 88o. As

mentioned above, tether elasticity allows the cylinder to move in the transverse direc-

tion, hence it exhibits large amplitudes of oscillation in this direction. Due to this large

oscillation, the wake width is considerably wider than that of the inelastically tethered

Elastic Tether, Subcritical Inelastic Tether

U∗ = 3.4

U∗ = 11.6

U∗ = 28.2

U∗ = 30.7

Figure 6.11: Spanwise vorticities at the top of the cycle for the elastically (kt = 0.1) tethered

cylinder and inelastically tethered cylinder at various U∗. Flow is coming from left.
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cylinder. Considering the little difference in the layover angles between the elastic and

inelastic cases, it is concluded that the cause of this huge difference in vortex structure

is from the change of oscillation direction relative to the tether and from the change

of oscillation amplitude. Contrary to the supercritical (kt = 5) case, little difference is

observed for a subcritical case of kt = 0.1 as shown in figure 6.11.

6.3 VIV of an Elastically Tethered Sphere

A schematic of the elastically tethered sphere is shown in figure 6.12. The same pro-

cedure adopted for the cylinder system was used to locate a critical kt value for the

sphere system. The mass ratio was set to unity, and simulations were performed for

a range of kt = 0.1 − 40 at several Reynolds numbers. The selected Re are 270, 330

and 400 representing Regime III, IV and V, respectively, found in the first part of the

current study for inelastic tethers.

Similar to the cylinder system, a critical value of the kt parameter is observed

through which the oscillation amplitude undergoes significant change. Figure 6.13

shows the “resonance” response appears to occur at kt = 4 or 8 for the sphere; it

was 2 for the cylinder. At higher kt = 20, there appears to be a further change in

oscillation behaviour. On the other hand, there are some differences to the cylinder

system in the amplitude response. One is that the magnitude of oscillation amplitude

increases as Re increases when kt is over the critical value (kt = 20). For the cylinder

Flow

Force
Spring

Force
Lateral

z

x

y

Drag

Lift + Buoyancy

Gravity
θ + δ

Figure 6.12: Schematic of a elastically tethered sphere.
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Figure 6.13: Total amplitude of oscillation as a function of the parameter kt. m∗ = 1, L0

= 10D and U∗ ≈ 32.

system, the magnitude does not change even when kt is raised over its critical value.

Another is that the critical value of kt seems to decrease as Re increases. This is based

on the appearance of a peak at kt = 8 for Re = 400 case, but it is not yet clear that

this value of kt, based on a single point, is a real critical value at Re = 400.

6.3.1 Response of the tethered sphere

Following the determination of the effect of varying kt, simulations were performed at

one subcritical point (kt = 2) and one supercritical point (kt = 40), then comparing

these with the inelastic case. A range of U∗ = 1 − 34 was obtained by changing the α

parameter as previously mentioned. The Reynolds number was set to 400, as it is the

highest Re investigated to determine the variation of the response with kt.

Figure 6.14 shows the layover angle of the tethered spheres with varying kt. Three

dotted vertical lines correspond to U∗ = 3.2, 7.7 and 21.8, and these will be used to

explain the details of the different responses. Unlike the cylinder case, there is little

change of layover angle between the subcritical (kt = 2) and supercritical (kt = 40) cases,

over the whole U∗ range investigated. For the subcritical case of kt = 2, only a little

deviation is observed in the range of U∗ = 27 − 32 which includes ϑ = 45o. The mean x

force, Cx, is investigated as this was closely related to the response of the layover angle

for the inelastically tethered cylinder. The mean Cx given for the supercritical case (kt

= 40) shown in figure 6.15 exhibits considerable increase in the range of U∗ = 5 − 20
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Figure 6.14: The effect of kt on the layover angle. m∗ = 0.833 and L0 = 10D.
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Figure 6.15: The effect of kt on the mean Cx. m∗ = 0.833 and L0 = 10D.

compared to the subcritical case (kt = 2), despite little difference in the layover angle.

This apparent mismatch between the responses of Cx and the layover angle is quite

different to the results for the tethered cylinder, where the increase of the mean Cx

results in the increase of the layover angle by the same percentage. By investigating

the amplitude response, it is revealed that the mean Cx has an effect more on the

amplitude than on the layover angle for the tethered sphere.

Different types of response emerge when kt is supercritical, particularly when U∗ <
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15. The difference is clearly revealed in figure 6.16. Within the range of U∗ = 1 − 4,

the sphere connected to an inelastic or a subcritically elastic tether exhibits minute

oscillation. However, when kt is supercritical, the elastically tethered sphere oscillates

at an amplitude of 0.1. This trend changes as the U∗ increases further until U∗ = 20,

at which the inelastically tethered sphere oscillates at higher amplitude. Its maximum

amplitude is approximately 0.32 whereas the maximum for the elastically tethered

sphere (kt = 40) is 0.1. In the range of U∗ = 20 − 34, the sphere oscillates at the same

amplitude, irrespective of the kt values considered. A peak at U∗ = 29 for the inelastic

case is due to the layover angle surpassing 45o.

0.0

0.1

0.2

0.3

0.4

0.5
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Figure 6.16: The effect of kt on the total RMS values in the x, y and z directions. m∗ =

0.833 and L0 = 10D.

It is of interest that the overall trend for the oscillation amplitude matches that for

the mean Cx for the whole U∗ range considered (see figure 6.15). The mean values of

Cy and Cz are shown in figure 6.17 as a function of U∗, and reveals that these values

vary little for the elastically tethered sphere where kt is supercritical. In contrast, the

mean values of Cy and Cz change considerably, particularly at low and high reduced

velocities for the inelastic (kt = 0) or a subcritically elastic (kt = 2) cases. These

large mean values of Cy and Cz at low reduced velocities (U∗ = 1 − 4) are due to the

fluctuation of Cy and Cz caused by the inelastic tether. However, the large mean values

at high reduced velocities (U∗ = 29 − 34) is because of the layover angle change through

ϑ = 45o as mentioned above.
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Figure 6.17: The effect of kt on the mean Cy and Cz . m∗ = 0.833 and L0 = 10D.

6.3.2 Trajectory, forcing and phase of the oscillating sphere

Figure 6.18 shows the xy trajectories of the sphere at the three reduced velocities indi-

cated by the vertical dotted lines in figures 6.14 and 6.16. As expected from the response

of layover angle and oscillation amplitude, the trajectory for the kt = 2 case exhibits

little difference to inelastic tethered (kt = 0) case. The inelastic and kt = 2 cases show

virtually no oscillation in either the x and y directions, except when U∗ = 7.7. How-
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Figure 6.18: Trajectory in xy coordinate with varying kt. The abscissa is x and the ordinate

is y for each subfigure. Flow is coming from left.
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ever, when the tether is supercritically elastic (kt = 40), the sphere oscillation in the y

direction has an amplitude of about 0.25D when U∗ = 3.2 and 21.8. When U∗ = 7.7,

the sphere with an elastic tether (kt = 40) shows no oscillation in either the x or y di-

rections. Note that the main direction of oscillation for the inelastically tethered sphere

is the third (z) direction.

The phase plots of total forces (Cx−Cy) in the xy plane are given in figure 6.19. The

phase plots for each kt and U∗ show lengths proportional to those of the xy trajectory,

except at U∗ = 3.2 for kt = 0 and 2. The apparent irregular pattern of Cx − Cy at

U∗ = 3.2 is due to the inelastic or subcritically elastic tether at the low reduced velocity

and the layover angle.
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Figure 6.19: Phase plot of total forces (Cx − Cy) in xy coordinate with varying kt. The

abscissa is Cx and the ordinate is Cy for each subfigure.

Figure 6.20 shows the sphere trajectories in the zx plane. For the range of U∗ = 1 − 34,

the sphere oscillates predominantly in the z direction when inelastically tethered (kt = 0).

Due to the predominant z oscillation for buoyant spheres resulting from the gravita-

tional restoring force, some previous experimental studies on VIV of the tethered sphere

have focused on the oscillation in the zx plane (Govardhan & Williamson 2005; Jauvtis

et al. 2001). However, an elastically tethered sphere oscillates in the z direction only
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at the intermediate reduced velocities, for example U∗ = 7.7, when kt is supercritical.

Note that the elastically tethered sphere (kt = 40) oscillates predominantly in the y

direction at U∗ = 3.2 and 21.8, as shown in figure 6.18.

As was reported in previous studies (Govardhan & Williamson 1997; Williamson &

Govardhan 1997; Jauvtis et al. 2001; Govardhan & Williamson 2005), the zx trajectories

with kt = 0 and 2 exhibit a figure-of-eight pattern with much larger z amplitude. It is

also known that the aspect ratio of the figure-of-eight trajectory is dependent on the

mass ratio (m∗); the sphere of large m∗ shows a figure-of-eight pattern of large aspect

ratio. For the kt = 40 case, the oscillation amplitude at U∗ = 7.7 observed in the

trajectory is smaller than that for the U∗ = 0 and 2 cases, as expected from figure 6.16.

The phase plots of the total forces (Cz −Cx) in the z and x directions are presented

in figure 6.21. The size and pattern of the phase plot of the forces are proportional

to the corresponding zx trajectory except at U∗ = 3.2 for kt = 0 and 2. The irregular

pattern of Cz − Cx at U∗ = 3.2 is due to the inelastic or subcritically elastic tether at

the low reduced velocity and the layover angle, as was the case for the xy trajectory

and phase plot.
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Figure 6.20: Trajectory in zx coordinate with varying kt. The abscissa is z and the ordinate

is x for each subfigure. Flow is coming from the bottom.
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Figure 6.21: Phase plot of total forces (Cz − Cx) in zx coordinate with varying kt. The

abscissa is Cz and the ordinate is Cx for each subfigure.
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kt = 0

Inelastic

kt = 2

kt = 40

x − Cx y − Cy z − Cz

Figure 6.22: Phase plot between the displacement and the force. The abscissa is the

displacement and the ordinate is the force for each subfigure. The axes are autoscaled to

show the pattern more clearly.

Figure 6.22 shows the phase plots between the displacement and the force in both x

(x−Cx), y (y−Cy) and z (z −Cz) directions. At each U∗, the inelastic and the kt = 2

cases show essentially the same pattern for all the phase plots. However, the pattern

for kt = 40 is different to that for the inelastic and the kt = 2 cases. Therefore, it is

clear that the elastically tethered sphere exhibits a different type of VIV when kt > 20,

which is the critical value when m∗ = 0.833 and L0 = 10D.
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6.3.3 Vortex structure around the oscillating sphere

Elastic Tether, Supercritical Inelastic Tether

U∗ = 3.2

U∗ = 7.7

U∗ = 21.8

Figure 6.23: Streamwise vorticity (xy view) for the elastically tethered sphere (kt = 40)

and inelastically tethered sphere at various U∗. The time for each figure is arbitrarily chosen.

Flow is coming from left and Re = 400.

Elastic Tether, Supercritical Inelastic Tether

U∗ = 3.2

U∗ = 7.7

U∗ = 21.8

Figure 6.24: Streamwise vorticity (zx view) for the elastically tethered sphere (kt = 40)

and inelastically tethered sphere at various U∗. The time for each figure is arbitrarily chosen.

Flow is coming from left and Re = 400.

The vortex structures are rendered by spanwise vorticity and presented in fig-

ures 6.23 and 6.24 for the xy view and the zx view, respectively. The main differ-

ence in the vortex structure for the inelastic and elastic cases is that, contrary to the

inelastic case, the elastically tethered sphere (kt) maintains planar-symmetry even at

low reduced velocities, for example at U∗ = 3.2. This is clearly shown in the top two

subfigures in figure 6.24. These two subfigures demonstrate the higher-amplitude os-
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cillation for the supercritically elastic case and the minute oscillation for the inelastic

case within the range of U∗ = 1 − 4.

Elastic Tether, Subcritical Inelastic Tether

U∗ = 3.2

U∗ = 7.7

U∗ = 21.8

Figure 6.25: Streamwise vorticity (xy view) for the elastically tethered sphere (kt = 2) and

inelastically tethered sphere at various U∗. The time for each figure is arbitrarily chosen.

Flow is coming from left and Re = 400.

Elastic Tether, Subcritical Inelastic Tether

U∗ = 3.2

U∗ = 7.7

U∗ = 21.8

Figure 6.26: Streamwise vorticity (zx view) for the elastically tethered sphere (kt = 2) and

inelastically tethered sphere at various U∗. The time for each figure is arbitrarily chosen.

Flow is coming from left and Re = 400.

It is also observed that, within the range U∗ = 5 − 20, the inelastically tethered

sphere oscillates at a higher amplitude than for the other cases. This is indicated by its

wider vortex structure in figure 6.24 (see the subfigures for U∗ = 7.7). One interesting

feature is that the oscillation direction is dependent on U∗ for the mass ratio considered

(m∗ = 0.833). At high and low reduced velocities, the sphere oscillates mainly in the

y direction, while it oscillates mainly in z direction at intermediate reduced velocities,
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which is clear from the orientation of the shed vortex structures in figures 6.23 and

6.24.

As was the case of the elastically tethered cylinder, little difference of vortex struc-

ture is observed when kt is subcritical. Figures 6.25 and 6.26 reveal that the vortex

structures of a elastically tethered sphere with kt = 2 are almost the same as those of

the inelastically tethered sphere at various U∗.

6.4 Chapter Conclusions

The effect of tether elasticity on the VIV of a tethered cylinder and of a tethered sphere

is investigated by introducing a linear spring parameter kt. A mass ratio of m∗ = 0.833

is chosen both for the cylinder and the sphere to see the effect more clearly and to be

consistent with the previous studies of tethered body VIV. A range of reduced velocity

U∗ = 1 − 34 is obtained by changing the parameter α, which is inversely proportional to

the square of the Froude number. Only the gravity term is varied allowing the Reynolds

number to remain constant and remove its effect on the VIV of the tethered bodies.

For the tethered cylinder, a critical value of the parameter kt is found to be kt = 2,

beyond which the response of the tethered cylinder with an elastic tether greatly differs

to that of the inelastically tethered cylinder. The responses of the layover angle and

the total RMS value of the oscillation in the x and y directions have been compared,

considering their links to the trends of mean Cx and Cy. It is found that, for the elasti-

cally tethered cylinder, the trajectory at the low reduced velocities (U∗ = 1 − 4) shows

a figure-of-eight pattern. This is due to the additional freedom to move allowed by the

elastic tether. At the low reduced velocities, the elastically tethered cylinder oscillates

mainly in the y direction, whereas the cylinder with an inelastic tether oscillates mainly

in the x direction with a minute amplitude of oscillation. Due to the large oscillations

at low reduced velocities for the elastically tethered cylinder, the wake width is greater

than that of the inelastically tethered cylinder. Considering the small difference in the

layover angles between the elastic and inelastic cases, it is concluded that this huge

difference in vortex structure is due to the change of oscillation direction relative to the

tether and from the change of oscillation amplitude.

A critical value of kt = 20 is found for the tethered sphere. However, the responses

of the layover angle and the amplitude are different to the cylinder case, particularly in

terms of the oscillation amplitude. In the range of U∗ = 5 − 20, the inelastically teth-
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ered sphere exhibits larger amplitude oscillation than that for the elastically tethered

sphere when kt is supercritical. Within the whole range of U∗ = 1 − 34, the amplitude

of the oscillation for the elastically tethered sphere (kt = 40) shows little change, consis-

tent with the same trends of the mean Cx, Cy and Cz. Interestingly, it is found that the

sphere oscillates in the y direction at the low and high reduced velocities, whereas the

sphere oscillates mainly in the z direction at the intermediate reduced velocities. From

the trajectories, it is verified that the tethered sphere with an inelastic tether oscillates

mainly in the z direction with a figure-of-eight pattern for the whole U∗ range. The

main difference in the vortex structure for the inelastic and elastic cases is that, con-

trary to the inelastic case, the elastically tethered sphere maintains planar-symmetry

even at low reduced velocities, for example at U∗ = 3.2. The vortex structure at the

intermediate reduced velocities, for example U∗ = 7.7, demonstrates the inelastically

tethered sphere exhibits a wider wake, consistent with its oscillation amplitude being

larger than that for the elastically tethered sphere.

In conclusion, it is found that, both for the cylinder and the sphere, there is a critical

value of kt above which the response is significantly different to that of inelastically

tethered bodies. When the kt exceeds its critical value (kt = 2 for the cylinder and

kt = 20 for the sphere), the oscillation amplitude is greatest at low U∗, whereas the

amplitude is greatest at high U∗ (for the cylinder) or at intermediate U∗ (for the

sphere) for the inelastic tethered case.
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Chapter 7

Conclusions and Future Work

Tethered Cylinders

Numerical simulations of VIV for a neutrally buoyant tethered cylinder have shown that

there exist three flow regimes (Regimes I, II and III) in terms of the layover angle ϑ,

oscillation amplitude and frequency within the range of Reynolds number Re = 10−300.

Regime I covers 10 ≤ Re < 40, and is steady with ϑ = 90o. Regime II exists over

40 ≤ Re < 200, and shows unsteady and periodic oscillation with growing amplitude

and frequency as Re increases, whereas ϑ decreases with increasing Re. Regime III,

starting at Re 200, exhibits much larger amplitude than that of Regime II, with slowly

varying components on its principal oscillation. The frequency of this regime is satu-

rated at St ≈ 0.17, which is lower than that for a fixed cylinder reported in Williamson

(1988a). The history and phase of the displacements and forces in the x and y direc-

tions, together with their power spectra, reveal that the principal oscillation in both

displacements is dominated by a fluctuating y force Cy, with secondary oscillations

affected by subharmonic frequencies of the x force Cx, particularly in Regime II.

Simulations of VIV for buoyant tethered cylinders, where the buoyancy is acting in

the y (crossflow) direction, have been carried out to find any similarity or dissimilarity

to the neutrally buoyant (m∗ = 1) case. A range of mass ratios of m∗ = 0.1 – 1.11

is covered. Similarities to the neutrally buoyant case of the number of regimes, the

Re range of each regime and the oscillation frequency are found. However, remarkable

differences are also found to exist, particularly in the two oscillating regimes: Regimes

II and III. As expected, due to the buoyancy effect, the layover angle is no longer close

to 90o, even for the steady Regime I, and decreases continuously across Regime I and

II for mass ratios up to 0.5. However, unlike the neutrally buoyant case, the oscillation

amplitude grows smoothly across Regime II and III and maintains periodicity in Regime
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III. Moreover, there is no subharmonic oscillation in the displacements for Regime II.

It is found that the difference in response to the neutrally buoyant case stems from

the buoyancy changing the layover angle considerably. Additionally, it is found that

there is a critical mass ratio beyond which the response and phase of the forces and

displacements change. From the mass ratios considered for the tether length of 10D,

the critical mass ratio exists within 0.5 ≤ m∗ ≤ 0.667.

VIV of a vertically tethered cylinder where the buoyancy is acting parallel to the

flow is also investigated to identify the resemblance to the neutrally buoyant sphere.

The vertically tethered cylinder has the same force balance as the neutrally buoyant

cylinder except for the difference of magnitude of the force in the x (parallel) direction,

and thus might be expected to reveal a close link to the neutrally buoyant cylinder.

Virtually the same response, phase portraits and power spectra are observed for the

vertically tethered cylinder and the neutrally buoyant cylinder, in particular, featuring a

doubling of the figure-of-eight trajectory in the phase plots. Due to effectively increased

drag on the vertically tethered cylinder, Regime II starts at a slightly higher Re than

the neutrally buoyant case, and the cylinder oscillates periodically at the end of Regime

II, whereas the cylinder with neutral buoyancy shows less periodic oscillation with a

slowly varying low frequency component. Based on these results, it is concluded that

the VIV of a tethered cylinder is dependent not only on the magnitude of buoyancy

(i.e. mass ratio) but also on the direction of buoyancy, and VIV of a neutrally buoyant

cylinder is closer to that of a vertically tethered cylinder than that of a horizontally

tethered buoyant cylinder.

Tethered Spheres

For the neutrally buoyant sphere, both from numerical and experimental studies, it is

found that there exist seven different flow regimes within the Reynolds number range

of Re = 50 – 8000. The transitions for the sphere between the regimes are comparable

to those for a fixed sphere, and in the shedding regimes the flow structures exhibit

two-sided shedding of hairpin-shaped vortices.

The first regime, Regime I, covers the range of Re = 50 – 205, and the sphere

remains steady with layover angle ϑ = 90o. Within Regime II, for Re = 210 – 250,

the flow is steady but asymmetric. Due to this asymmetry, the sphere offsets from

the symmetry axis with decreasing layover angles. As Re increases further, the sphere
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starts to vibrate at Re = 270, the start of Regime III. Regime IV begins at Re = 300.

It shows a steep decrease of the layover angle indicating the body offsets more from the

pivot axis than other regimes. The sphere predominantly oscillates in the azimuthal

direction with a frequency of St = 0.111, which is close to that of the stationary sphere

(St = 0.134) but much higher than its natural frequency (St ≈ 0.029).

In Regime V covering Re = 335 – 500, the layover angle comes back to ϑ = 90o, and

the sphere oscillates predominantly in the radial direction with increasing amplitude

as Re increases. The frequency of the radial displacement for Regime V is 0.104, and

is also close to, but less than, that of the fixed sphere (St = 0.134). In Regime VI,

the vibrations become chaotic and the sphere undertakes chaotic wandering, having no

restoring forces. The range of Re for Regime VI covers both simulations and exper-

iments, and the existence of the regime is verified by observing the irregular pattern

in the experiments. In Regime VII (Re ≥ 3000), the oscillation becomes quasi-circular

following an irregular pattern. As Re is raised further, the sphere motion exhibits more

clearly a circular shape.

The effect of changing the mass ratio has been examined for the mass ratios of

m∗ = 0.909 and 0.667. Response characteristics within the regimes, even though the

corresponding Re ranges are dependent on the mass ratio, are similar to that of a

neutrally buoyant tethered sphere for all the mass ratios considered. On the other hand,

a neutrally buoyant tethered sphere also exhibits a difference in oscillation response to

that of a buoyant tethered sphere, in particular for Regime III (Re = 270 – 300)

and Regime VII (Re > 3000). The difference becomes even more evident when the

simulations for a vertically tethered sphere are considered.

A comparison between the three types of tethering (horizontal tethering, vertical

tethering, and the tethering a neutrally buoyant sphere) reveals that VIV of a neutrally

buoyant tethered sphere is closer to that of a non-buoyant tethered sphere with vertical

tethering. This is confirmed by finding the quasi-circular motion both for the neutrally

buoyant tethered sphere and the vertically tethered heavy sphere. This motion results

from the similarity of the force balance and the relative magnitude of the forces acting

on the sphere. By analysing the phase plots between the force and the displacement, it

is also found that the pattern of the trajectory depends on the relative magnitude of the

mean forces in each direction, as these mean forces decide the level of force fluctuations.

Simulations for a buoyant sphere at several Reynolds numbers have been conducted.

171



It is found that the amplitude of oscillation shows dependence on the Reynolds number.

The peak amplitude and the range of high-amplitude regime involving U∗ = 5 undergo

a significant change as Re increases. Importantly, the amplitude response at the highest

Re = 800 shows similarity to that of previous experimental studies at much higher Re

within U∗ = [1, 30]. Based on this, it is highly likely that the difference in amplitude

response between the simulations and the experiments for VIV of tethered bodies is

due to the difference in the Re ranges.

Elastic Tethers

The effect of tether elasticity on VIV of a tethered cylinder and of a tethered sphere is

investigated by introducing a linear spring parameter kt. A range of reduced velocity

U∗ = 1 – 34 is investigated at fixed Reynolds numbers Re = 200 (cylinder) and 400

(sphere).

For the tethered cylinder, a critical value of the parameter kt is found to be kt = 2,

beyond which the response of the tethered cylinder with an elastic tether greatly differs

to that of an inelastically tethered cylinder. For the elastically tethered cylinder, the

trajectory at the low reduced velocities (U∗ = 1 – 4) shows a figure-of-eight pattern.

This is due to the additional freedom to move allowed by the elastic tether. At these

low reduced velocities, the elastically tethered cylinder oscillates mainly in the y direc-

tion, whereas the cylinder with an inelastic tether oscillates mainly in the x direction

with a minute amplitude of oscillation. Due to the large oscillations at low reduced

velocities for the elastically tethered cylinder, the wake width is greater than that of

the inelastically tethered cylinder. Considering the small difference in the layover an-

gles between the elastic and inelastic cases, it is concluded that this huge difference in

vortex structure is due to the change of oscillation direction relative to the tether and

from the change of oscillation amplitude.

Similar to the cylinder case, a critical value of kt = 20 is found for the tethered

sphere. However, the responses of the layover angle and the amplitude are different

to the cylinder case, particularly in terms of the oscillation amplitude. In the range

of U∗ = 5 – 20, the inelastically tethered sphere exhibits larger amplitude than that

for the elastically tethered sphere when kt is supercritical. Within the whole range

of U∗ = 1 – 34, the amplitude of the oscillation for the elastically tethered sphere

(kt = 40) shows little change, consistent with the same trends of the mean Cx, Cy and
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Cz. Interestingly, it is found that the sphere oscillates in the y direction at the low and

high reduced velocities, whereas the sphere oscillates mainly in the z direction at the

intermediate reduced velocities. From the trajectories, it is verified that the tethered

sphere with an inelastic tether oscillates mainly in the z direction with a figure-of-

eight pattern for the whole U∗ range. The vortex structure for the elastically tethered

sphere maintains planar-symmetry even at low reduced velocities, whereas that of the

inelastically tethered sphere is asymmetric.

In conclusion, it is found that, both for the cylinder and the sphere, there is a critical

value of kt above which the response is significantly different to that of inelastically

tethered bodies. When the kt exceeds its critical value (kt = 2 for the cylinder and

kt = 20 for the sphere), the oscillation amplitude is greatest at low U∗, whereas the

amplitude is greatest at high U∗ (for the cylinder) or at intermediate U∗ (for the sphere)

for the inelastic tethered case.

Possible Future Work

From this thesis, several findings have been reported that present potential areas of

future studies. These include:

• A more detailed study regarding the effect of the Reynolds number on VIV of

tethered sphere. Even though the results in chapter 5 indicate an Re effect on the

amplitude of oscillation, further studies at higher Re are needed to quantify the

effect. This could be done numerically using the Large Eddy Simulation (LES)

or Detached Eddy Simulation (DES) as the range of Re > 104 is well beyond

the range for the Direct Numerical Simulation (DNS). Of course, this approach

would prove expensive, as both long evolution times and high mesh resolutions

are required. Naturally, experimental studies are another way to obtain the high-

Re data. A disadvantage is that it is difficult to have independent control of both

the reduced velocity and the Reynolds number.

• Stability studies to identify the transitions between the regimes. As this thesis has

focused on VIV, i.e., the response of a neutrally buoyant cylinder or sphere and

the differences from the response of buoyant tethered bodies, investigating flow

transitions and the transition mechanisms would be interesting follow-up stud-

ies. Floquet stability analysis and/or Stuart-Landau modelling for the neutrally
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buoyant tethered bodies could quantify and elucidate the transitions found in the

present study.

• Broader investigation into the effect of elasticity. The studies presented here are

restricted in the choice of the spring parameter values selected. Especially for

a tethered sphere, the initial investigation on the effect of varying the spring

parameter indicated a rich response behaviour, with signs of a direct resonance

response at the natural shedding frequency and its first harmonic, as well as an

enhanced response at much higher values of the spring parameter. There was also

considerable dependence on Reynolds number. It would certainly be interesting

to repeat some simulations at considerably higher Reynolds numbers (at least

Re = 800) to further investigate the response.

• Nonlinearity of the tether elasticity. Remarkable differences in the tethered body

response have been presented in chapter 6 when elasticity is introduced to the

tether through a linear spring force. As tethering using an elastic tether occurs

in real applications, it would be worthwhile to extend this study to consider a

nonlinear spring force.

The research directions explored in this thesis are applicable to broader areas. One

is ocean and offshore engineering. Offshore exploration is continually moving to deeper

sea floors in search of energy resources, which means an understanding of fluid-structure

interaction is more crucial than ever. For example, tethered bodies such as deep sea ris-

ers connecting between the sea surface platforms and the ocean floor are of considerable

importance in extracting subsea resources. Another area where the present research

may be beneficial is the fast-growing area of biological engineering, in particular, mod-

elling of circulation processes inside human bodies. For example, white blood cells use

tethering to attach to blood vessels walls as part of the immune response, as do much

smaller platelets, essential to the clotting response.
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